Skip to main content
Log in

Revisiting the energy treatment of the density of molecular crystals: an interrelation between intermolecular interaction energies and changes of molecular volume

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An interrelation between the density and lattice energy of molecular crystals is analyzed based on the results of quantum chemical calculations of model supramolecular associates. Using the Interacting Quantum Atoms approach and calculations of molecular volume changes upon the onset of intermolecular interactions, it was found that the deformation energy (a contribution to the lattice energy) depends on the “densification” of a molecule. The significance of these dependences under variation of the electron density isosurface used for molecular volume calculations is studied. An important role is demonstrated of the choice of the isosurface for consistent description of intermolecular interactions using the geometric approach based on the volume and density and the energy treatment based on the lattice energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pauling, J. Am. Chem. Soc., 1929, 51, 1010.

    Article  CAS  Google Scholar 

  2. A. I. Kitaigorodskii, Molecular Crystals and Molecules, Academic Press, New York, 1973, 570 pp.

    Google Scholar 

  3. S. M. Woodley, R. Catlow, Nat. Mater., 2008, 7, 937.

    Article  CAS  PubMed  Google Scholar 

  4. A. R. Oganov, C. W. Glass, J. Chem. Phys., 2006, 124, 244704.

    Article  PubMed  CAS  Google Scholar 

  5. R. Martonak, A. Laio, M. Parrinello, Phys. Rev. Lett., 2003, 90, 075503.

    Article  CAS  PubMed  Google Scholar 

  6. A. M. Neumann, F. J. J. Leusen, J. Kendrick, Angew. Chem., Int. Ed., 2008, 47, 2427.

    Article  CAS  Google Scholar 

  7. E. C. Dybeck, N. S. Abraham, N. P. Schieber, M. R. Shirts, Cryst. Growth Des., 2017, 17, 1775.

    Article  CAS  Google Scholar 

  8. G. R. Desiraju, Nat. Mater., 2002, 1, 77.

    Article  CAS  PubMed  Google Scholar 

  9. J. George, D. Waroquiers, D. Di Stefano, G. Petretto, G. M. Rignanese, G. Hautier, Angew. Chem., Int. Ed., 2020, 59, 7569.

    Article  CAS  Google Scholar 

  10. A. R. Oganov, Modern Methods of Crystal Structure Prediction, Wiley-VCH, Berlin, 2010.

    Book  Google Scholar 

  11. J. D. Dunitz, Chem. Comm., 2003, 545.

  12. K. Yu. Suponitsky, T. V. Timofeeva, M. Yu. Antipin, Russ. Chem. Rev., 2006, 75, 457.

    Article  CAS  Google Scholar 

  13. A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole, K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day, R. A. DiStasio, A. Dzyabchenko, B. P. van Eijck, D. M. Elking, J. A. van den Ende, J. C. Facelli, M. B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee, R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton, L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick, N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma, N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes, M. P. Metz, A. J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs, M. A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov, A. M. Orendt, G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa, L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. Schneider, C. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. Szalewicz, C. R. Taylor, A. Tkatchenko, M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu, C. R. Groom, Acta Crystallogr., 2016, B72, 439.

    Google Scholar 

  14. J. Nyman, M. G. Day, CrystEngComm, 2015, 17, 5154.

    Article  CAS  Google Scholar 

  15. S. L. Price, Chem. Soc. Rev., 2014, 43, 2098.

    Article  CAS  PubMed  Google Scholar 

  16. G. R. Desiraju, Angew. Chem., Int. Ed., 1995, 21, 2311.

    Article  Google Scholar 

  17. H. P. G. Thompson, M. G. Day, Chem. Sci., 2014, 5, 3173.

    Article  CAS  Google Scholar 

  18. I. Yu. Chernyshov, I. V. Ananyev, E. A. Pidko, ChemPhysChem, 2020, 21, 370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, N. V. Muravyev, A. B. Sheremetev, Chem. Asian J., 2018, 13, 1165.

    Article  CAS  PubMed  Google Scholar 

  20. I. L. Dalinger, O. V. Serushkina, N. V. Muravyev, D. B. Meerov, E. A. Miroshnichenko, T. S. Kon’kova, K. Yu. Suponitsky, M. Vener, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 18669.

    Article  CAS  Google Scholar 

  21. V. P. Sinditskii, A. V. Burzhava, A. V. Usuntsinova, V. Yu. Egorshev, N. V. Palysaeva, K. Yu. Suponitsky, I. V. Ananiev, A. B. Sheremetev, Combust. Flame, 2020, 213, 343.

    Article  CAS  Google Scholar 

  22. K. Yu. Suponitsky, A. A. Anisimov, I. V. Ananyev, A. A. Lashakov, S. V. Osintseva, V. A. Zalomlenkov, A. A. Gidaspov, Chem. Heterocycl. Compd., 2021, 57, 266.

    Article  CAS  Google Scholar 

  23. K. Yu. Suponitsky, A. F. Smol’yakov, I. V. Ananyev, A. V. Khakhalev, A. A. Gidaspov, A. B. Sheremetev, ChemistrySelect, 2020, 5, 14543.

    Article  CAS  Google Scholar 

  24. A. A. Larin, A. V. Shaferov, M. A. Epishina, I. N. Melnikov, N. V. Muravyev, I. V. Ananyev, L. L. Fershtat, N. N. Makhova, ACS Appl. Energy Mater., 2020, 3, 7764.

    Article  CAS  Google Scholar 

  25. A. A. Larin, N. V. Muravyev, A. N. Pivkina, K. Yu. Suponitsky, I. V. Ananyev, D. V. Khakimov, L. L. Fershtat, N. N. Makhova, Chem. Eur. J., 2019, 25, 4225.

    Article  CAS  PubMed  Google Scholar 

  26. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, K. Yu. Suponitsky, D. E. Dmitriev, A. B. Sheremetev, Org. Chem. Front., 2019, 6, 249.

    Article  CAS  Google Scholar 

  27. I. L. Dalinger, O. V. Serushkina, D. L. Lipilin, A. A. Anisimov, K. Yu. Suponitsky, A. B. Sheremetev, ChemPlusChem, 2019, 84, 802.

    Article  CAS  PubMed  Google Scholar 

  28. M. A. Blanco, A. M. Pendás, E. Francisco, J. Chem. Theory Comput., 2005, 1, 1096.

    Article  CAS  PubMed  Google Scholar 

  29. R. F. W. Bader, Chem. Rev., 1991, 91, 893.

    Article  CAS  Google Scholar 

  30. C. F. Matta, R. J. Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA, Drug Design, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2007.

    Book  Google Scholar 

  31. P. L. A. Popelier, in Quantum Chemical Topology in the Chemical Bond - 100 Years Old and Getting Stronger, Ed. M. Mingos, Springer, Switzerland, 2016, p. 71.

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2016.

    Google Scholar 

  33. J. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys., 1996, 105, 9982.

    Article  CAS  Google Scholar 

  34. A. Carlo, V. Barone, J. Chem. Phys., 1999, 110, 6158.

    Article  Google Scholar 

  35. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.

    Article  CAS  Google Scholar 

  36. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.

    Article  PubMed  CAS  Google Scholar 

  37. T. Keith, AIMAll (Version 19.02.13), TK Gristmill Software, Overland Park KS, 2016.

    Google Scholar 

  38. D. Suarez, N. Diaz, E. Francisco, A. M. Pendas, ChemPhysChem, 2018, 19, 973.

    Article  CAS  PubMed  Google Scholar 

  39. P. Maxwell, A. M. Pendas, P. L. A. Popelier, Phys. Chem. Chem. Phys., 2016, 18, 20986.

    Article  CAS  PubMed  Google Scholar 

  40. T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580.

    Article  PubMed  CAS  Google Scholar 

  41. D. Menéndez-Crespo, A. Costales, E. Francisco, Á. M. Pendás, Chem. Eur. J., 2018, 24, 9101.

    Article  PubMed  CAS  Google Scholar 

  42. M. A. Spackman, P. G. Byrom, Chem. Phys. Lett., 1997, 267, 215.

    Article  CAS  Google Scholar 

  43. M. A. Spackman, D. Jayatilaka, CrystEngComm, 2009, 11, 19.

    Article  CAS  Google Scholar 

  44. A. A. Romanova, K. A. Lyssenko, I. V. Ananyev, J. Comput. Chem., 2018, 39, 1607.

    Article  CAS  PubMed  Google Scholar 

  45. I. S. Bushmarinov, K. A. Lyssenko, M. Yu. Antipin, Russ. Chem. Rev., 2009, 78, 283.

    Article  CAS  Google Scholar 

  46. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921.

    Article  CAS  Google Scholar 

  47. Y. Tang, C. He, G. H. Imler, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2018, 6, 5136.

    Article  CAS  Google Scholar 

  48. J. S. Murray, P. Politzer, J. Mol. Struct. (THEOCHEM), 1998, 425, 107.

    Article  CAS  Google Scholar 

  49. A. F. Smol’yakov, S. V. Osintseva, E. A. Mamin, P. R. Petrova, A. V. Koval’skaya, I. P. Tsypysheva, Russ. Chem. Bull., 2020, 69, 148.

    Article  CAS  Google Scholar 

  50. I. V. Ananyev, Russ. Chem. Bull., 2019, 68, 1343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ananyev.

Additional information

This work was financially supported by the Council on Grants at the President of the Russian Federation (Programs for State Support of Young Researchers from the Russian Federation and for State Support of Leading Scientific Schools in the Russian Federation (Project MK-3372.2019.3). A. A. Anisimov expresses his gratitude to the Russian Science Foundation (Project No. 19-13-00437) for the financial support of the analysis of changes in the Delta(OED) parameter depending on the choice of the isoelectronic surface.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1429–1437, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A.A., Ananyev, I.V. Revisiting the energy treatment of the density of molecular crystals: an interrelation between intermolecular interaction energies and changes of molecular volume. Russ Chem Bull 70, 1429–1437 (2021). https://doi.org/10.1007/s11172-021-3236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3236-x

Key words

Navigation