Skip to main content
Log in

New tridentate ligands based on 2-tert-butyl-4-methylphenol: synthesis and structure

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New sterically hindered bis(3-tert-butyl-2-hydroxy-5-methylbenzyl)amine was synthesized based on 2-tert-butyl-4-methylphenol. The reaction of the latter with N, N-dimethylformamide affords N, N-bis(3-tert-butyl-2-hydroxy-5-methylbenzyl)formamide. According to the X-ray diffraction data, this reaction product occurs in the crystal as a dimer stabilized by a bifurcated hydrogen bond. The intermolecular component of the C=O⋯H-O hydrogen bond (l = 1.990 Å) between the carbonyl oxygen atom of one molecule and the phenolic hydroxy group of another molecule ensures the formation of dimers. Another component is the intramolecular C=O⋯H-O hydrogen bond (l = 1.754 Å) between the carbonyl oxygen atom and the phenolic hydroxy group of the same molecule. In the crystal, the dimers are linked via C-H…π interactions to form long chains (2.741 Å).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Poddel’sky, V. K. Cherkasov, G. A. Abakumov, Coord. Chem. Rev., 2009, 253, 291; DOI:https://doi.org/10.1016/j.ccr.2008.02.004.

    Article  Google Scholar 

  2. S. Dagorne, C. R. Chimie, 2006, 9, 1143; DOI:https://doi.org/10.1016/j.crci.2005.12.003.

    Article  CAS  Google Scholar 

  3. D. L. J. Broere, R. Plessius, J. I. van der Vlugt, Chem. Soc. Rev., 2015, 44, 6886; DOI: https://doi.org/10.1039/c5cs00161g.

    Article  CAS  Google Scholar 

  4. K. V. Tsys, M. G. Chegerev, G. K. Fukin, A. G. Starikov, A. V. Piskunov, Mendeleev Commun., 2020, 30, 205; DOI: https://doi.org/10.1016/j.mencom.2020.03.025.

    Article  CAS  Google Scholar 

  5. A. V. Piskunov, K. I. Pashanova, I. V. Ershova, A. S. Bogomyakov, A. G. Starikov, A. V. Cherkasov, Russ. Chem. Bull., 2019, 68, 757; DOI: https://doi.org/10.1007/s11172-019-2483-6.

    Article  CAS  Google Scholar 

  6. G. Licini, M. Mba, C. Zonta, Dalton Trans., 2009, 5265; DOI: https://doi.org/10.1039/b822653a.

  7. M. Aghazadeh Meshgi, K. V. Zaitsev, M. V. Vener, A. V. Churakov, J. Baumgartner, C. Marschner, ACS Omega, 2018, 3, 10317; DOI: https://doi.org/10.1021/acsomega.8b01402.

    Article  CAS  Google Scholar 

  8. G. Singh, S. Girdhar, M. Garg, Promila, Synth.&React. Inorg., Metal-Org.&Nano-Metal Chem., 2013, 43, 1107; DOI: https://doi.org/10.1080/15533174.2012.756023.

    Article  CAS  Google Scholar 

  9. A. L. Johnson, M. G. Davidson, Y. Perez, M. D. Jones, N. Merle, P. R. Raithby, S. P. Richards, Dalton Trans., 2009, 5551; DOI: https://doi.org/10.1039/B904534A.

  10. S. M. Raders, J. G. Verkade, J. Org. Chem., 2009, 74, 5417; DOI: https://doi.org/10.1021/jo9009134.

    Article  CAS  Google Scholar 

  11. W. Su, Y. Kim, A. Ellern, I. A. Guzei, J. G. Verkade, J. Am. Chem. Soc., 2006, 128, 13727; DOI: https://doi.org/10.1021/ja0626786.

    Article  CAS  Google Scholar 

  12. N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, Organometallics, 2001, 20, 2331; DOI: https://doi.org/10.1021/om001024h.

    Article  CAS  Google Scholar 

  13. N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, Organometallics, 2000, 19, 5614; DOI: https://doi.org/10.1021/om0008225.

    Article  CAS  Google Scholar 

  14. A. Chandrasekaran, R. O. Day, R. R. Holmes, J. Am. Chem. Soc., 2000, 122, 1066; DOI: https://doi.org/10.1021/ja9926360.

    Article  CAS  Google Scholar 

  15. A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, Inorg. Chem., 1999, 38, 3952; DOI: https://doi.org/10.1021/ic990486o.

    Article  CAS  Google Scholar 

  16. N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, Inorg. Chem., 1998, 37, 4945; DOI: https://doi.org/10.1021/ic980660.

    Article  CAS  Google Scholar 

  17. P. Chaudhuri, R. Wagner, T. Weyhermuller, Inorg. Chem., 2007, 46, 5134; DOI: https://doi.org/10.1021/ic070238p.

    Article  CAS  Google Scholar 

  18. A. Peuronen, A. Lehtonen, Top. Catal., 2016, 59, 1132; DOI: https://doi.org/10.1007/s11244-016-0632-9.

    Article  CAS  Google Scholar 

  19. A. Lehtonen, R. Sillanpa, Inorg. Chem., 2004, 43, 6501; DOI: https://doi.org/10.1021/ic049448h.

    Article  CAS  Google Scholar 

  20. T. Weyhermüller, R. Wagner, P. Chaudhurin, Eur. J. Inorg. Chem., 2011, 2547; DOI: https://doi.org/10.1002/ejic.201001340.

  21. T. C. Siu, I. Silva, M. J. Lunn, A. Joh, New J. Chem., 2020, 44, 9933; DOI: https://doi.org/10.1039/d0nj02151b.

    Article  CAS  Google Scholar 

  22. Y. Liu, L. N. Dawe, C. M. Kozak, Dalton Trans., 2019, 13699; DOI: https://doi.org/10.1039/c9dt03118a.

  23. I. S. Belostotskaya, N. L. Komissarova, T. I. Prokof’eva, L. N. Kurkovskaya, V. B. Vol’eva, Russ. J. Org. Chem., 2005, 41, 703; DOI:_https://doi.org/10.1007/s11178-005-0229-4.

    Article  CAS  Google Scholar 

  24. A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahonc, Dalton Trans., 2006, 887; DOI: https://doi.org/10.1039/b513345a.

  25. J. Jiang, Y. Cui, Y. Lu, B. Zhang, X. Pan, J. Wu, Macromolecules, 2020, 53, 946; DOI: https://doi.org/10.1021/acs.macromol.9b02302.

    Article  CAS  Google Scholar 

  26. D. Wang, S. V. Lindeman, A. T. Fiedler, Inorg. Chim. Acta, 2014, 421, 559; DOI: https://doi.org/10.1016/j.ica.2014.07.018.

    Article  CAS  Google Scholar 

  27. V. Cherkasov, N. Druzhkov, T. Kocherova, G. Fukin, A. Shavyrin, Tetrahedron, 2011, 67, 80; DOI: https://doi.org/10.1016/j.tet.2010.11.030.

    Article  CAS  Google Scholar 

  28. E. Allenstein, W. Schwarz, E. Schrempf, Z. Anorg. Allg. Chem., 1987, 546, 107; DOI: https://doi.org/10.1002/zaac.19875460310.

    Article  CAS  Google Scholar 

  29. G. Zhang, B. Gao, H. Huang, Angew. Chem., Int. Ed., 2015, 54, 7657; DOI: https://doi.org/10.1002/anie.201502405.

    Article  CAS  Google Scholar 

  30. M. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss, P. Chakrabartie, Phys. Chem. Chem. Phys., 2014, 16, 12648; DOI: https://doi.org/10.1039/c4cp00099d.

    Article  CAS  Google Scholar 

  31. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Elsevier, 2009. 760 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Lazareva.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1349-1355, July, 2021.

We are grateful to A. A. Korlyukov for performing the X-ray diffraction study and preparing the cif fail for compound 4.

The results of NMR spectroscopy and elemental analysis were obtained using equipment of the Baikal Analytical Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, N.F., Zelbst, E.A. New tridentate ligands based on 2-tert-butyl-4-methylphenol: synthesis and structure. Russ Chem Bull 70, 1349–1355 (2021). https://doi.org/10.1007/s11172-021-3222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3222-3

Key words

Navigation