Skip to main content
Log in

Chiral recognition of N-thiophosphorylated thioureas via nickel(ii) coordination assisted by 4-dimethylaminopyridine

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Nickel(ii) complexes were synthesized using chiral N-thiophosphorylated thioureas as the starting compounds and 4-dimethylaminopyridine as a co-ligand. The reaction with racemic thiourea afforded homochiral complexes due to the distortion of the nickel coordination. The unsaturated coordination sphere of nickel ions results in the formation of supramolecular homochiral 1D chains in the crystal through steric key—lock interactions between adjacent molecules. Conformational flexibility of the ligands is responsible for disorder of molecules in the crystals and the occurrence of polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiral Recognition in Separation Methods, Ed. A. Berthod, Springer-Verlag, Berlin, 2010, 337 p.

    Google Scholar 

  2. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem, Eds A. Guijarro, M. Yus, Royal Society of Chemistry, Cambridge, 2009, 150 pp.

    Google Scholar 

  3. K. Soai, Proc. Jpn. Acad., Ser. B, 2019, 95, 89; DOI: https://doi.org/10.2183/pjab.95.009.

    Article  CAS  Google Scholar 

  4. Y. Sang, M. Liu, Symmetry, 2019, 11, 950; DOI: https://doi.org/10.3390/sym11080950.

    Article  CAS  Google Scholar 

  5. A. J. Bissette, S. P. Fletcher, Angew. Chem., Int. Ed. Engl., 2013, 52, 12800; DOI: https://doi.org/10.1002/anie.201303822.

    Article  CAS  Google Scholar 

  6. D. G. Blackmond, Phil. Trans. R. Soc. B, 2011, 366, 2878; DOI: https://doi.org/10.1098/rstb.2011.0130.

    Article  CAS  Google Scholar 

  7. M. Quack, Angew. Chem. Int. Ed. Engl., 2002, 41, 4618; DOI: https://doi.org/10.1002/anie.200290005.

    Article  CAS  Google Scholar 

  8. K. Soai, S. Niwa, H. Hori, J. Chem. Soc. Chem. Commun., 1990, 982; DOI: https://doi.org/10.1039/C39900000982.

  9. F. C. Frank, Biochim. Biophys. Acta, 1953, 11, 459; DOI: https://doi.org/10.1016/0006-3002(53)90082-1.

    Article  CAS  Google Scholar 

  10. Enantioselection in Asymmetric Catalysis, Eds I. D. Gridnev, P. A. Dub, CRC Press, Boca Raton, 2016, 246 p.

    Google Scholar 

  11. J. F. Scholtes, O. Trapp, Angew. Chem. Int. Ed. (Engl.), 2019, 58, 6306; DOI: https://doi.org/10.1002/anie.201901175.

    Article  CAS  Google Scholar 

  12. Y. Li, X. Caumes, M. Raynal, L. Bouteiller, Chem. Commun., 2019, 55, 2162; DOI: https://doi.org/10.1039/C8CC09819K.

    Article  CAS  Google Scholar 

  13. C. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. Eur. J., 2019, 25, 662; DOI: https://doi.org/10.1002/chem.201802817.

    Article  CAS  Google Scholar 

  14. A. Gualandi, F. Calogero, S. Potenti, P. G. Cozzi, Molecules, 2019, 24, 1716; DOI: https://doi.org/10.3390/molecules24091716.

    Article  CAS  Google Scholar 

  15. M. Durmaz, E. Halay, S. Bozkurt, Beil. J. Org. Chem., 2018, 14, 1389; DOI: https://doi.org/10.3762/bjoc.14.117.

    Article  CAS  Google Scholar 

  16. Z. Xia, X. Jing, C. He, X. Wang, C. Duan, Sci. Rep., 2017, 7, 15418; DOI: https://doi.org/10.1038/s41598-017-15780-0.

    Article  Google Scholar 

  17. Chiral Separations: Methods and Protocols, Ed. G. K. E. Scriba, Humana Press, New York, 2019, 501 p.

    Google Scholar 

  18. A. Singh, N. Kaur, H. Kumar Chopra, Crit. Rev. Anal. Chem., 2019, 49, 553; DOI: https://doi.org/10.1080/10408347.2019.1565985.

    Article  CAS  Google Scholar 

  19. X. Deng, W. Li, G. Ding, T. Xue, X. Chen, Sep. Purif. Rev., 2019, 48, 14; DOI: https://doi.org/10.1080/15422119.2017.1419257.

    Article  CAS  Google Scholar 

  20. X.-Y. Huang, K.-J. Quan, D. Pei, J.-F. Liu, D.-L. Di, Chirality, 2018, 30, 974; DOI: https://doi.org/10.1002/chir.22975.

    Article  CAS  Google Scholar 

  21. M. Greño, M. L. Marina, M. Castro-Puyana, Crit. Rev. Anal. Chem., 2018, 48, 429; DOI: https://doi.org/10.1080/10408347.2018.1439365.

    Article  Google Scholar 

  22. M. Rachwalski, N. Vermue, F. P. J. T. Rutjes, Chem. Soc. Rev., 2013, 42, 9268; DOI: https://doi.org/10.1039/C3CS60175G.

    Article  CAS  Google Scholar 

  23. A. Berthod, Anal. Chem., 2006, 78, 2093; DOI: https://doi.org/10.1021/ac0693823.

    Article  Google Scholar 

  24. D. Braga, F. Grepioni, L. Maini, S. d’Agostino, IUCrJ, 2017, 4, 369; DOI: https://doi.org/10.1107/S2052252517005917.

    Article  CAS  Google Scholar 

  25. G. R. Desiraju, J. Am. Chem. Soc., 2013, 135, 9952; DOI: https://doi.org/10.1021/ja403264c.

    Article  CAS  Google Scholar 

  26. J. McConathy, M. J. Owens, Prim. Care Companion J. Clin. Psychiatry, 2003, 5, 70; DOI: https://doi.org/10.4088/pcc.v05n0202.

    Article  Google Scholar 

  27. O. N. Kataeva, K. E. Metlushka, Z. R. Yamaleeva, K. A. Ivshin, A. G. Kiiamov, O. A. Lodochnikova, K. A. Nikitina, D. N. Sadkova, L. N. Punegova, A. D. Voloshina, A. P. Lyubina, A. S. Sapunova, O. G. Sinyashin, V. A. Alfonsov, Cryst. Growth Des., 2019, 19, 4044; DOI: https://doi.org/10.1021/acs.cgd.9b00446.

    Article  CAS  Google Scholar 

  28. O. Kataeva, K. Metlushka, Z. Yamaleeva, K. Ivshin, R. Zinnatullin, K. Nikitina, D. Sadkova, E. Badeeva, O. Sinyashin, V. Alfonsov, Crystals, 2019, 9, 606; DOI: https://doi.org/10.3390/cryst9120606.

    Article  CAS  Google Scholar 

  29. K. E. Metlushka, D. N. Sadkova, L. N. Shaimardanova, K. A. Nikitina, K. A. Ivshin, D. R. Islamov, O. N. Kataeva, A. V. Alfonsov, V. E. Kataev, A. D. Voloshina, L. N. Punegova, V. A. Alfonsov, Inorg. Chem. Commun., 2016, 66, 11; DOI: https://doi.org/10.1016/j.inoche.2016.01.021.

    Article  CAS  Google Scholar 

  30. K. E. Metlushka, D. N. Sadkova, K. A. Nikitina, O. A. Lodochnikova, O. N. Kataeva, V. A. Alfonsov, Russ. J. Gen. Chem., 2017, 87, 2130; DOI: https://doi.org/10.1134/S1070363217090389.

    Article  CAS  Google Scholar 

  31. M. G. Babashkina, D. A. Safin, M. Srebro, P. Kubisiak, M. P. Mitoraj, M. Bolte, Y. Garcia, Eur. J. Inorg. Chem., 2013, 545; DOI: https://doi.org/10.1002/ejic.201200890.

  32. M. G. Babashkina, D. A. Safin, M. Srebro, P. Kubisiak, M. P. Mitoraj, M. Bolte, Y. Garcia, CrystEngComm, 2011, 13, 5321; DOI: https://doi.org/10.1039/c1ce05387f.

    Article  CAS  Google Scholar 

  33. M. G. Babashkina, D. A. Safin, M. Bolte, M. Srebro, M. Mitoraj, A. Uthe, A. Klein, M. Köckerling, Dalton Trans., 2011, 40, 3142; DOI: https://doi.org/10.1039/c0dt01382j.

    Article  CAS  Google Scholar 

  34. Bruker. APEX3 Crystallography Software Suite, Bruker AXS Inc., Bruker, Area Detector Control and Integration Software, Version 5.x, in SMART, Madison, WI, USA, 2016.

  35. Bruker. SAINT Crystallography Software Suite, Bruker AXS Inc., Madison, WI, USA, 2016.

  36. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  37. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kataeva.

Additional information

Based on the materials of the II Scientific Conference “Dynamic Processes in the Chemistry of Organoelement Compounds” (November 11–13, 2020, Kazan, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1304–1310, July, 2021.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00572) and a subsidy allocated to the Kazan Federal University for the implementation of the state assignment in the field of scientific activity (Project No. 0671-2020-0063).

We gratefully acknowledge the Spectral-Analytical Center of the Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences (CSF-SAC FRC KSC RAS) for providing necessary facilities to carry out this work.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metlushka, K.E., Sadkova, D.N., Nikitina, K.A. et al. Chiral recognition of N-thiophosphorylated thioureas via nickel(ii) coordination assisted by 4-dimethylaminopyridine. Russ Chem Bull 70, 1304–1310 (2021). https://doi.org/10.1007/s11172-021-3215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3215-2

Key words

Navigation