Skip to main content
Log in

Complexes LNi(Cp)X with alkylamino-substituted N-heterocyclic carbene ligands (L) and their catalytic activity in the Suzuki—Miyaura reaction

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New nickel(ii) complexes of the general formula LNi(Cp)X (L is an N-heterocyclic carbene (NHC) ligand of the 1,2,4-triazole or imidazole series; Cp is the cyclopentadienyl anion; X = Cl, I) are reported. In these complexes, the NHC ligands (L) contain an alkylamino group at the 3 or 4 position of the heterocycle. The synthesized complexes and structurally similar complexes without an alkylamino group were tested for catalytic activity in the Suzuki—Miyaura reaction. The introduction of an alkylamino group into the NHC ligand leads to the enhancement of the catalytic activity of complexes with N,N′-diaryl-substituted NHC ligands of the imidazole series and a decrease in the activity of the complexes with N,N′-dialkyl-substituted NHC ligands of the 1,2,4-triazole series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hazari, P. R. Melvin, M. M. Beromi, Nature Rev. Chem., 2017, 1, 0025; DOI: https://doi.org/10.1038/s41570-017-0025.

    Article  CAS  Google Scholar 

  2. R. Takise, K. Muto, J. Yamaguchi, Chem. Soc. Rev., 2017, 46, 5864; https://doi.org/10.1039/C7CS00182G.

    Article  CAS  PubMed  Google Scholar 

  3. A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Chem. Rev., 2018, 118, 2249; DOI: https://doi.org/10.1021/acs.chemrev.7b00443.

    Article  CAS  PubMed  Google Scholar 

  4. D. Balcells, A. Nova, ACS Catal., 2018, 8, 3499; DOI: https://doi.org/10.1021/acscatal.8b00230.

    Article  CAS  Google Scholar 

  5. R. I. Khusnutdinov, N. A. Shchadneva, Russ. Chem. Rev., 2019, 88, 800; DOI: https://doi.org/10.1070/RCR4881.

    Article  CAS  Google Scholar 

  6. D. S. Kopchuk, O. S. Taniya, A. F. Khasanov, A. P. Krinochkin, I. S. Kovalev, T. A. Pospelova, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin, Chem. Heterocycl. Compd. (Engl. Transl.), 2019, 55, 490; DOI: https://doi.org/10.1007/s10593-019-02487-5.

    Article  CAS  Google Scholar 

  7. P. S. Gribanov, G. A. Chesnokov, P. B. Dzhevakov, N. Y. Kirilenko, S. A. Rzhevskiy, A. A. Ageshina, M. A. Topchiy, M. V. Bermeshev, A. F. Asachenko, M. S. Nechaev, Mendeleev Commun., 2019, 29, 147; DOI: https://doi.org/10.1016/j.mencom.2019.03.009.

    Article  CAS  Google Scholar 

  8. E. S. Matyugina, A. L. Khandazhinskaya, S. N. Kochetkov, K. L. Seley-Radtke, Mendeleev Commun., 2020, 30, 231; DOI: https://doi.org/10.1016/j.mencom.2020.03.034.

    Article  CAS  Google Scholar 

  9. S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature, 2014, 509, 299; DOI: https://doi.org/10.1038/nature13274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. P. Ananikov, ACS Catal., 2015, 5, 1964; DOI: https://doi.org/10.1021/acscatal.5b00072.

    Article  CAS  Google Scholar 

  11. Z. N. Gafurov, A. A. Kagilev, A. O. Kantyukov, A. A. Balabaev, O. G. Sinyashin, D. G. Yakhvarov, Russ. Chem. Bull., 2018, 67, 385; DOI: https://doi.org/10.1007/s11172-018-2086-7.

    Article  CAS  Google Scholar 

  12. A. V. Astakhov, O. V. Khazipov, E. S. Degtyareva, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2015, 34, 5759; DOI: https://doi.org/10.1021/acs.organomet.5b00856.

    Article  CAS  Google Scholar 

  13. F.-S. Han, Chem. Soc. Rev., 2013, 42, 5270; DOI: https://doi.org/10.1039/C3CS35521G.

    Article  CAS  PubMed  Google Scholar 

  14. Ł. Banach, P. A. Guńka, J. Zachara, W. Buchowicz, Coord. Chem. Rev., 2019, 389, 19; DOI: https://doi.org/10.1016/j.ccr.2019.03.006.

    Article  CAS  Google Scholar 

  15. I. P. Beletskaya, F. Alonso, V. Tyurin, Coord. Chem. Rev., 2019, 385, 137; DOI: https://doi.org/10.1016/j.ccr.2019.01.012.

    Article  CAS  Google Scholar 

  16. S. B. Soliev, A. V. Astakhov, D. V. Pasyukov, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 683; DOI: https://doi.org/10.1007/s11172-020-2818-3.

    Article  CAS  Google Scholar 

  17. J. Buchspies, M. M. Rahman, M. Szostak, Catalysts, 2020, 10, 372; DOI: https://doi.org/10.3390/catal10040372.

    Article  CAS  Google Scholar 

  18. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature, 2014, 510, 485; DOI: https://doi.org/10.1038/nature13384.

    Article  CAS  PubMed  Google Scholar 

  19. H. V. Huynh, Chem. Rev., 2018, 118, 9457; DOI: https://doi.org/10.1021/acs.chemrev.8b00067.

    Article  CAS  PubMed  Google Scholar 

  20. A. V. Astakhov, S. B. Soliev, E. G. Gordeev, V. M. Chernyshev, V. P. Ananikov, Dalton Trans., 2019, 48, 17052, DOI: https://doi.org/10.1039/c9dt03266e.

    Article  CAS  PubMed  Google Scholar 

  21. V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V. P. Ananikov, Chem. Sci., 2020, 11, 6957; DOI: https://doi.org/10.1039/D0SC02629H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. V. Ritleng, A. M. Oertel, M. J. Chetcuti, Dalton Trans., 2010, 39, 8153; DOI: https://doi.org/10.1039/C0DT00021C.

    Article  CAS  PubMed  Google Scholar 

  23. A. M. Oertel, V. Ritleng, M. J. Chetcuti, Organometallics, 2012, 31, 2829; DOI: https://doi.org/10.1021/om201101g.

    Article  CAS  Google Scholar 

  24. Y. Wei, A. Petronilho, H. Mueller-Bunz, M. Albrecht, Organometallics, 2014, 33, 5834; DOI: https://doi.org/10.1021/om500593s.

    Article  CAS  Google Scholar 

  25. J. Yau, K. E. Hunt, L. McDougall, A. R. Kennedy, D. J. Nelson, Beilstein J. Org. Chem., 2015, 11, 2171; DOI: https://doi.org/10.3762/bjoc.11.235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F. P. Malan, E. Singleton, P. H. van Rooyen, M. Landman, J. Organomet. Chem., 2016, 813, 7; DOI: https://doi.org/10.1016/j.jorganchem.2016.03.017.

    Article  CAS  Google Scholar 

  27. S. Ando, H. Matsunaga, T. Ishizuka, J. Org. Chem., 2017, 82, 1266; DOI: https://doi.org/10.1021/acs.joc.6b02666.

    Article  CAS  PubMed  Google Scholar 

  28. E. Peris, Chem. Rev., 2018, 118, 9988; DOI: https://doi.org/10.1021/acs.chemrev.6b00695.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zhang, V. César, G. Storch, N. Lugan, G. Lavigne, Angew. Chem., Int. Ed., 2014, 53, 6482; DOI: https://doi.org/10.1002/anie.201402301.

    Article  CAS  Google Scholar 

  30. Y. Zhang, V. César, G. Lavigne, Eur. J. Org. Chem., 2015, 2015, 2042; DOI: https://doi.org/10.1002/ejoc.201500030.

    Article  CAS  Google Scholar 

  31. Y. Zhang, G. Lavigne, V. César, J. Org. Chem., 2015, 80, 7666; DOI: https://doi.org/10.1021/acs.joc.5b01272.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Zhang, G. Lavigne, N. Lugan, V. César, Chem. Eur. J., 2017, 23, 13792; DOI: https://doi.org/10.1002/chem.201702859.

    Article  CAS  PubMed  Google Scholar 

  33. N. Fukaya, T. Mizusaki, K. Hatakeyama, Y. Seo, Y. Inaba, K. Matsumoto, V. Y. Lee, Y. Takagi, J. Kuwabara, T. Kanbara, Y.-K. Choe, J.-C. Choi, Organometallics, 2019, 38, 375; DOI: https://doi.org/10.1021/acs.organomet.8b00757.

    Article  CAS  Google Scholar 

  34. M. Sevim, S. B. Kavukcu, A. Kınal, O. Şahin, H. Türkmen, Dalton Trans., 2020, DOI: https://doi.org/10.1039/D0DT02937H.

  35. S. V. Voitekhovich, A. S. Lyakhov, L. S. Ivashkevich, V. E. Matulis, Y. V. Grigoriev, P. N. Gaponik, O. A. Ivashkevich, Tetrahedron, 2012, 68, 4962; DOI: https://doi.org/10.1016/j.tet.2012.04.063.

    Article  CAS  Google Scholar 

  36. A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981; DOI: https://doi.org/10.1021/acs.organomet.7b00184.

    Article  CAS  Google Scholar 

  37. V. César, J.-C. Tourneux, N. Vujkovic, R. Brousses, N. Lugan, G. Lavigne, Chem. Commun., 2012, 48, 2349; https://doi.org/10.1039/C2CC17870B.

    Article  CAS  Google Scholar 

  38. A. A. Danopoulos, P. Braunstein, Chem. Commun., 2014, 50, 3055; DOI: https://doi.org/10.1039/c3cc49517e.

    Article  CAS  Google Scholar 

  39. M. Hans, J. Lorkowski, A. Demonceau, L. Delaude, Beilstein J. Org. Chem., 2015, 11, 2318; DOI: https://doi.org/10.3762/bjoc.11.252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. D. Abernethy, A. H. Cowley, R. A. Jones, J. Organomet. Chem., 2000, 596, 3; DOI: https://doi.org/10.1016/S0022-328X(99)00557-4.

    Article  CAS  Google Scholar 

  41. O. R. Luca, B. A. Thompson, M. K. Takase, R. H. Crabtree, J. Organomet. Chem., 2013, 730, 79; DOI: https://doi.org/10.1016/j.jorganchem.2012.10.038.

    Article  CAS  Google Scholar 

  42. L. P. Bheeter, D. Wei, V. Dorcet, T. Roisnel, P. Ghosh, J.-B. Sortais, C. Darcel, Eur. J. Inorg. Chem., 2015, 2015, 5226; DOI: https://doi.org/10.1002/ejic.201500852.

    Article  CAS  Google Scholar 

  43. T. Szilvási, T. Veszprémi, ACS Catal., 2013, 3, 1984; DOI: https://doi.org/10.1021/cs400429j.

    Article  CAS  Google Scholar 

  44. N. I. Saper, A. Ohgi, D. W. Small, K. Semba, Y. Nakao, J. F. Hartwig, Nature Chem., 2020, 12, 276; DOI: https://doi.org/10.1038/s41557-019-0409-4.

    Article  CAS  Google Scholar 

  45. R. A. Kelly, N. M. Scott, S. Díez-González, E. D. Stevens, S. P. Nolan, Organometallics, 2005, 24, 3442; DOI: https://doi.org/10.1021/om0501879.

    Article  CAS  Google Scholar 

  46. J. A. Lowe, D. L. Hageman, S. E. Drozda, S. McLean, D. K. Bryce, R. T. Crawford, S. Zorn, J. Morrone, J. Bordner, J. Med. Chem., 1994, 37, 3789; DOI: https://doi.org/10.1021/jm00048a015.

    Article  CAS  PubMed  Google Scholar 

  47. H. Seguin, D. Gardette, M.-F. Moreau, J.-C. Madelmont, J.-C. Gramain, Synth. Commun., 1998, 28, 4257; DOI: https://doi.org/10.1080/00397919809458707.

    Article  CAS  Google Scholar 

  48. L.-Y. Xu, C.-Y. Liu, S.-Y. Liu, Z.-G. Ren, D. J. Young, J.-P. Lang, Tetrahedron, 2017, 73, 3125; DOI: https://doi.org/10.1016/j.tet.2017.04.034.

    Article  CAS  Google Scholar 

  49. L. Liu, Y. Zhang, B. Xin, J. Org. Chem., 2006, 71, 3994; DOI: https://doi.org/10.1021/jo060122v.

    Article  CAS  PubMed  Google Scholar 

  50. B. Xin, J. Chem. Res., 2008, 2008, 412; DOI: https://doi.org/10.3184/030823408785702544.

    Article  Google Scholar 

  51. M.-X. Li, Y.-L. Tang, H. Gao, Z.-W. Mao, Tetrahedron Lett., 2020, 61; DOI: https://doi.org/10.1016/j.tetlet.2020.151784.

  52. K. E. Krahulic, G. D. Enright, M. Parvez, R. Roesler, J. Am. Chem. Soc., 2005, 127, 4142; DOI: https://doi.org/10.1021/ja050129e.

    Article  CAS  PubMed  Google Scholar 

  53. G. Sheldrick, Acta Crystallogr., Sect. A., 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    Article  CAS  PubMed  Google Scholar 

  54. G. Sheldrick, Acta Crystallogr. Sect. A., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1281–1289, July, 2021.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, V.V., Shevchenko, M.A., Soliev, S.B. et al. Complexes LNi(Cp)X with alkylamino-substituted N-heterocyclic carbene ligands (L) and their catalytic activity in the Suzuki—Miyaura reaction. Russ Chem Bull 70, 1281–1289 (2021). https://doi.org/10.1007/s11172-021-3212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3212-5

Key words

Navigation