Skip to main content
Log in

Synthesis of heterocyclic systems involving [3,3]-sigmatropic rearrangements

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review summarizes the data on the synthesis of heterocyclic compounds by means of [3,3]-sigmatropic transformations, which include the Fischer, Claisen, and Cope rearrangements, as well as their numerous variations. These reactions have proved to be a convenient and efficient method for the synthesis of complex and poorly available heterocyclic systems with several chiral centers due to the highly ordered transition state of the process. Methods for the construction of five- and six-membered and medium size oxygen-, nitrogen-, and sulfur- containing heterocycles are described, as well as their use in the synthesis of condensed systems and natural compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fischer, O. Hess, Ber. Deutsch. Chem. Ges., 1884, 17, 559; DOI: https://doi.org/10.1002/cber.188401701155.

    Article  Google Scholar 

  2. C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc., 2008, 130, 7568; DOI: https://doi.org/10.1021/ja803158y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. C. Nicolaou, H. Xu, M. Wartmann, Angew. Chem., Int. Ed., 2005, 44, 756; DOI: https://doi.org/10.1002/anie.200462211.

    Article  CAS  Google Scholar 

  4. X. Huang, S. Klimczyk, N. Maulide, Synthesis, 2012, 44, 175; DOI: https://doi.org/10.1055/s-0031-1289632.

    CAS  Google Scholar 

  5. J. Clayden, M. Donnard, J. Lefranc, D. J. Tetlow, Chem. Commun., 2011, 47, 4624; DOI: https://doi.org/10.1039/C1CC00049G.

    Article  CAS  Google Scholar 

  6. D. O. Tymoshenko, Mini-Revs in Org. Chem., 2008, 5(2), 85; DOI: https://doi.org/10.2174/157019308784223587.

    Article  CAS  Google Scholar 

  7. V. Valerio, C. Madelaine, N. Maulide, Chem. A Eur. J., 2011, 17, 4742; DOI: https://doi.org/10.1002/chem.201003591.

    Article  CAS  Google Scholar 

  8. R. Malherbe, G. Rist, D. Bellus, J. Org. Chem., 1983, 48, 860; DOI: https://doi.org/10.1021/jo00154a023.

    Article  CAS  Google Scholar 

  9. P. Bravo, A. Arnone, P. Bandiera, L. Bruché, Y. Ohashi, T. Ono, A. Sekine, M. Zanda, Eur. J. Org. Chem., 1999, 111; DOI: https://doi.org/10.1002/(SICI)1099-0690(199901)1999:1<111::AID-EJOC111>3.0.CO;2-5.

  10. M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett., 2005, 7, 3925; DOI: https://doi.org/10.1021/ol0514101.

    Article  CAS  PubMed  Google Scholar 

  11. V. Nagaraju, C. E. Raju, D. Purnachandar, V. J. Rao, G. V. Karunakar, Chem. Select, 2019, 4, 2053; DOI: https://doi.org/10.1002/slct.201803888.

    CAS  Google Scholar 

  12. V. Vaithiyanathan, K. Selvakumar, P. Shanmugam, Synlett, 2009, 1591; DOI: https://doi.org/10.1055/s-0029-1217194.

  13. T. Sheradsky, Tetrahedron Lett., 1970, 11, 25; DOI: https://doi.org/10.1016/S0040-4039(01)87556-0.

    Article  Google Scholar 

  14. B. A. Trofimov, A. I. Mikhaleva, Heterocycles, 1994, 37, 1193; DOI: https://doi.org/10.3987/REV-93-SR6.

    Article  CAS  Google Scholar 

  15. L. N. Sobenina, A. P. Demenev, A. I. Mikhaleva, B. A. Trofimov, Russ. Chem. Rev., 2002, 71, 563; DOI: https://doi.org/10.1070/RC2002v071n07ABEH000726.

    Article  CAS  Google Scholar 

  16. B. A. Trofimov, Curr. Org. Chem., 2002, 6, 1121; DOI: https://doi.org/10.2174/1385272023373581.

    Article  CAS  Google Scholar 

  17. A. M. Vasil’tsov, A. V. Ivanov, A. I. Mikhaleva, B. A. Trofimov, Tetrahedron Lett., 2010, 51, 1690; DOI: https://doi.org/10.1016/j.tetlet.2010.01.079.

    Article  CAS  Google Scholar 

  18. O. V. Petrova, L. N. Sobenina, I. A. Ushakov, A. I. Mikhaleva, S. H. Hyun, B. A. Trofimov, Arkivoc, 2009, 4, 14; DOI: https://doi.org/10.3998/ark.5550190.0010.402.

    Google Scholar 

  19. B. A. Trofimov, O. A. Tarasova, A. I. Mikhaleva, N. A. Kalinina, L. M. Sinegovskya, J. Henkelmann, Synthesis, 2000, 1585; DOI: https://doi.org/10.1055/s-2000-7618.

  20. S. Ngwerume, J. E. Camp, J. Org. Chem., 2010, 75, 6271; DOI: https://doi.org/10.1021/jo1011448.

    Article  CAS  PubMed  Google Scholar 

  21. S. Ngwerume, J. E. Camp, Chem. Commun., 2011, 47, 1857; DOI: https://doi.org/10.1039/C0CC04372A.

    Article  CAS  Google Scholar 

  22. H. Y. Wang, D. S. Mueller, R. M. Sachwani, R. Kapadia, H. N. Londino, L. L. Anderson, J. Org. Chem., 2011, 76, 3203; DOI: https://doi.org/10.1021/jo200061b.

    Article  CAS  PubMed  Google Scholar 

  23. O. Piloty, Chem. Ber., 1910, 43, 489; DOI: https://doi.org/10.1002/cber.19100430182.

    Article  CAS  Google Scholar 

  24. R. Robinson, G. M. Robinson, J. Chem. Soc. Trans., 1918, 113, 639; DOI: https://doi.org/10.1039/CT9181300639.

    Article  CAS  Google Scholar 

  25. H. Posvic, R. Dombro, H. Ito, T. Telinski, J. Org. Chem., 1974, 39, 2575; DOI: https://doi.org/10.1021/jo00931a027.

    Article  CAS  Google Scholar 

  26. M. H. Shen, M. Han, H. D. Xu, Org. Lett., 2016, 18, 889; DOI: https://doi.org/10.1021/acs.orglett.5b02843.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Endo, K. Shudo, Tetrahedron Lett., 1991, 32, 4517; DOI: https://doi.org/10.1016/0040-4039(91)80028-5.

    Article  CAS  Google Scholar 

  28. I. V. Magedov, Y. I. Smushkevich, J. Chem. Soc., Chem. Commun., 1990, 1686; DOI: https://doi.org/10.1039/C39900001686.

  29. S. J. Miller, C. D. Bayne, J. Org. Chem., 1997, 62, 5680; DOI: https://doi.org/10.1021/jo971050y.

    Article  Google Scholar 

  30. B. C. Milgram, K. Eskildsen, S. M. Richter, W. R. Scheidt, K. A. Scheidt, J. Org. Chem., 2007, 72, 3941; DOI: https://doi.org/10.1021/jo070389+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Frey, Synlett, 1994, 1007; DOI: https://doi.org/10.1055/s-1994-34978.

  32. H. Zhou, Y. Xie, L. Ren, R. Su, Org. Lett., 2009, 12, 356; DOI: https://doi.org/10.1021/ol902690h.

    Article  CAS  Google Scholar 

  33. C. A. Marques, M. Selva, P. Tundo, F. Montanari, J. Org. Chem., 1993, 58, 21, 5765; DOI: https://doi.org/10.1021/jo00073a041.

    Article  Google Scholar 

  34. D. J. Babinski, X. Bao, M. El Arba, B. Chen, D. A. Hrovat, W. T. Borden, D. E. Frantz, J. Am. Chem. Soc., 2012, 134, 16139; DOI: https://doi.org/10.1021/ja307213m.

    Article  CAS  PubMed  Google Scholar 

  35. D. J. Babinski, H. R. Aguilar, R. Still, D. E. Frantz, J. Org. Chem., 2011, 76, 5915; DOI: https://doi.org/10.1021/jo201042c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Menz, S. F. Kirsch, Org. Lett., 2006, 8, 4795; DOI: https://doi.org/10.1021/ol061856x.

    Article  CAS  PubMed  Google Scholar 

  37. A. Rodrigues, E. E. Lee, R. A. Batey, Org. Lett., 2009, 12, 260; DOI: https://doi.org/10.1021/ol9025759.

    Article  CAS  Google Scholar 

  38. Z. Wang, X. Lin, R. L. Luck, G. Gibbons, S. Fang, Tetrahedron, 2009, 65, 2643; DOI: https://doi.org/10.1016/j.tet.2009.01.065.

    Article  CAS  Google Scholar 

  39. A. O. Kokuev, Y. A. Antonova, V. S. Dorokhov, I. S. Golovanov, Y. V. Nelyubina, A. A. Tabolin, S. L. Ioffe, J. Org. Chem., 2018, 83, 11057; DOI: https://doi.org/10.1021/acs.joc.8b01652.

    Article  CAS  PubMed  Google Scholar 

  40. U. M. Lindstroem, P. Somfai, J. Am. Chem. Soc., 1997, 119, 8385; DOI: https://doi.org/10.1021/ja971572v.

    Article  CAS  Google Scholar 

  41. U. M. Lindstroem, P. Somfai, Synthesis, 1998, 109; DOI: https://doi.org/10.1055/s-1998-2004.

  42. U. M. Lindstroem, P. Somfai, Chem. Eur. J., 2001, 7, 94; DOI: https://doi.org/10.1002/1521-3765(20010105)7:1<94::AID-CHEM94>3.0.CO;2-M.

    Article  Google Scholar 

  43. T. Sasaki, S. Eguchi, M. Ohno, J. Am. Chem. Soc., 1970, 92, 3192; DOI: https://doi.org/10.1021/ja00713a050.

    Article  CAS  Google Scholar 

  44. T. Sasaki, S. Eguchi, M. Ohno, J. Org. Chem., 1972, 37, 466; DOI: https://doi.org/10.1021/jo00968a030.

    Article  CAS  Google Scholar 

  45. M. Ishida, H. Muramaru, S. Kato, Synthesis, 1989, 562; DOI: https://doi.org/10.1021/jo00324a007.

  46. B. J. Simmons, M. Hoffmann, P. A. Champagne, E. Picazo, K. Yamakawa, L. A. Morrill, N. K. Garg, J. Am. Chem. Soc., 2017, 139, 14833; DOI: https://doi.org/10.1021/jacs.7b07518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, Org. Lett., 2011, 13, 3667; DOI: https://doi.org/10.1021/ol201413r.

    Article  CAS  PubMed  Google Scholar 

  48. S. Ali Ghumro, R. D. Alharthy, M. Al-Rashida, S. Ahmed, M. I. Malik, A. Hameed, ACS Omega, 2017, 2, 2891; DOI: https://doi.org/10.1021/acsomega.7b00618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. Dalpozzo, G. Bartoli, Curr. Org. Chem., 2005, 9, 163; DOI: https://doi.org/10.2174/1385272053369204.

    Article  CAS  Google Scholar 

  50. G. Bartoli, G. Palmieri, M. Bosco, R. Dalpozzo, Tetrahedron Lett., 1989, 30, 2129; DOI: https://doi.org/10.1016/S0040-4039(01)93730-X.

    Article  CAS  Google Scholar 

  51. G. Bartoli, M. Bosco, R. Dalpozzo, G. Palmieri, E. Marcantoni, J. Chem. Soc., Perkin Trans. 1, 1991, 2757; DOI: https://doi.org/10.1039/P19910002757.

  52. K. R. Buszek, N. Brown, D. Luo, Org. Lett., 2009, 11, 201; DOI: https://doi.org/10.1021/ol802425m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. P. Dobbs, M. Voyle, N. Whitall, Synlett, 1999, 1594; DOI: https://doi.org/10.1055/s-1999-2900.

  54. Y. Endo, T. Uchida, S. Hizatate, K. Shudo, Synthesis, 1994, 1096; DOI: https://doi.org/10.1055/s-1994-25645.

  55. P. S. Almeida, S. Prabhakar, A. M. Lobo, M. J. Marcelo-Curlo, Tetrahedron Lett., 1991, 32, 2671; DOI: https://doi.org/10.1016/S0040-4039(00)78815-0.

    Article  CAS  Google Scholar 

  56. Z. Mao, S. W. Baldwin, Org. Lett., 2004, 6, 2425; DOI: https://doi.org/10.1021/ol0491888.

    Article  CAS  PubMed  Google Scholar 

  57. N. Duguet, A. M. Z. Slawin, A. D. Smith, Org. Lett., 2009, 11, 3858; DOI: https://doi.org/10.1021/ol901441t.

    Article  CAS  PubMed  Google Scholar 

  58. J. S. Yadav, B. V. Subba Reddy, M. Abdul Rasheed, H. M. Sampath Kumar, Synlett, 2000, 487; DOI: https://doi.org/10.1055/s-2000-6574.

  59. A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson, Org. Lett., 2010, 12, 812; DOI: https://doi.org/10.1021/ol902885j.

    Article  CAS  PubMed  Google Scholar 

  60. A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson, Org. Lett., 2010, 12, 1492; DOI: https://doi.org/10.1021/ol100196a.

    Article  CAS  PubMed  Google Scholar 

  61. K. L. Jones, A. Porzelle, A. Hall, M. D. Woodrow, N. C. O. Tomkinson, Org. Lett., 2008, 10, 797; DOI: https://doi.org/10.1021/ol7029273.

    Article  CAS  PubMed  Google Scholar 

  62. A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson, Org. Lett., 2009, 11, 233; DOI: https://doi.org/10.1021/ol8025022.

    Article  CAS  PubMed  Google Scholar 

  63. M. Toyota, K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1992, 547; DOI: https://doi.org/10.1039/P19920000547.

  64. J. Feierfeil, T. Magauer, Chem. Eur. J., 2018, 24, 1455; DOI: https://doi.org/10.1002/chem.201705662.

    Article  CAS  PubMed  Google Scholar 

  65. T. Kobatake, D. Fujino, S. Yoshida, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc., 2010, 132, 11838; DOI: https://doi.org/10.1021/ja1030134.

    Article  CAS  PubMed  Google Scholar 

  66. T. Sheradsky, Tetrahedron Lett., 1966, 7, 5225; DOI: https://doi.org/10.1016/S0040-4039(01)89260-1.

    Article  Google Scholar 

  67. A. J. Castellino, H. Rapoport, J. Org. Chem., 1986, 51, 1006; DOI: https://doi.org/10.1021/jo00357a011.

    Article  CAS  Google Scholar 

  68. D. Yan, H. Jiang, W. Sun, W. Wei, J. Zhao, X. Zhang, Y. D. Wu, Org. Process Res. Dev., 2019, 23, 1646; DOI: https://doi.org/10.1021/acs.oprd.9b00002.

    Article  CAS  Google Scholar 

  69. H. Gao, Q. L. Xu, C. Keene, L. Kuerti, Chem. Eur. J., 2014, 20, 8883; DOI: https://doi.org/10.1002/chem.201403519.

    CAS  PubMed  Google Scholar 

  70. V. H. Grant, B. Liu, Tetrahedron Lett., 2005, 46, 1237; DOI: https://doi.org/10.1016/j.tetlet.2005.01.006.

    Article  CAS  Google Scholar 

  71. L. Song, F. Huang, L. Guo, M. A. Ouyang, R. Tong, Chem. Commun., 2017, 53, 6021; DOI: https://doi.org/10.1039/C7CC03037A.

    Article  CAS  Google Scholar 

  72. B. Schmidt, M. Riemer, U. Schilde, Synlett, 2014, 25, 2943; DOI: https://doi.org/10.1055/s-0034-1379364.

    Article  CAS  Google Scholar 

  73. B. Schmidt, M. Riemer, U. Schilde, Eur. J. Org. Chem., 2015, 7602; DOI: https://doi.org/10.1002/ejoc.201501151.

  74. M. Ackermann, J. Bucher, M. Rappold, K. Graf, F. Rominger, A. S. K. Hashmi, Chem. Asian J., 2013, 8, 1786; DOI: https://doi.org/10.1002/asia.201300324.

    Article  CAS  PubMed  Google Scholar 

  75. N. Cairns, L. M. Harwood, D. P. Astles, J. Chem. Soc., Perkin Trans. 1, 1994, 3101; DOI: https://doi.org/10.1039/P19940003101.

  76. K. C. Majumdar, P. Biswas, Tetrahedron, 1999, 55, 1449; DOI: https://doi.org/10.1016/S0040-4020(98)01124-7.

    Article  CAS  Google Scholar 

  77. B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem. Soc., 2013, 135, 8512; DOI: https://doi.org/10.1021/ja401343p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. L. S. M. Wong, K. A. Turner, J. M. White, A. B. Holmes, J. H. Ryan, Aust. J. Chem., 2010, 63, 529; DOI: https://doi.org/10.1071/CH09637.

    Article  CAS  Google Scholar 

  79. N. R. Curtis, A. B. Holmes, M. G. Looney, Tetrahedron, 1991, 47, 7171; DOI: https://doi.org/10.1016/S0040-4020(01)96169-1.

    Article  CAS  Google Scholar 

  80. G. R. Cook, J. R. Stille, Tetrahedron, 1994, 50, 4105; DOI: https://doi.org/10.1016/S0040-4020(01)86707-7.

    Article  CAS  Google Scholar 

  81. C. J. Deur, M. W. Miller, L. S. Hegedus, J. Org. Chem., 1996, 61, 2871; DOI: https://doi.org/10.1021/jo951829c.

    Article  CAS  PubMed  Google Scholar 

  82. J. B. Bremner, D. F. Perkins, Tetrahedron, 2005, 61, 2659; DOI: https://doi.org/10.1016/j.tet.2005.01.061.

    Article  CAS  Google Scholar 

  83. Y. G. Suh, J. Y. Lee, S. A. Kim, J. K. Jung, Synth. Commun., 1996, 26, 1675; DOI: https://doi.org/10.1080/00397919608002605.

    Article  CAS  Google Scholar 

  84. Y. G. Suh, S. A. Kim, J. K. Jung, D. Y. Shin, K. H. Min, B. A. Koo, H. S. Kim, Angew. Chem., Int. Ed., 1999, 38, 3545; DOI: https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3545::AID-ANIE3545>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  85. J. W. Jung, Y. G. Suh, S. H. Kim, W. I. Lee, S. M. Kim, J. K. Jung, J. Jang, J. Sim, Heterocycles, 2016, 92, 886; DOI: https://doi.org/10.3987/COM-16-13432.

    Article  CAS  Google Scholar 

  86. E. D. Edstrom, Tetrahedron Lett., 1991, 32, 5709; DOI: https://doi.org/10.1016/S0040-4039(00)93536-6.

    Article  CAS  Google Scholar 

  87. E. D. Edstrom, J. Am. Chem. Soc., 1991, 113, 6690; DOI: https://doi.org/10.1021/ja00017a060.

    Article  CAS  Google Scholar 

  88. A. S. Howard, J. P. Michael, The Alkaloids: Chemistry and Pharmacology, Academic Press, London, 1986, 183; DOI: https://doi.org/10.1016/S0099-9598(08)60115-7.

    Google Scholar 

  89. R. Malherbe, D. A Bellus, Helv. Chim. Acta, 1978, 61, 3096; DOI: https://doi.org/10.1002/hlca.19780610836.

    Article  CAS  Google Scholar 

  90. E. Vedejs, R. A. Buchanan, J. Org. Chem., 1984, 49, 1840; DOI: https://doi.org/10.1021/jo00184a039.

    Article  CAS  Google Scholar 

  91. G. Rosini, E. G. Spineti, G. Pradella, J. Org. Chem., 1981, 46, 2228; DOI: https://doi.org/10.1021/jo00324a007.

    Article  CAS  Google Scholar 

  92. V. K. Aggarwal, A. Lattanzi, D. Fuentes, Chem. Commun., 2002, 2534; DOI: https://doi.org/10.1039/B206857E.

  93. E. Vedejs, M. Gingras, J. Am. Chem. Soc., 1994, 116, 579; DOI: https://doi.org/10.1021/ja00081a019.

    Article  CAS  Google Scholar 

  94. M. H. Weston, K. Nakajima, M. Parvez, T. G. Back, Chem. Commun., 2006, 3903; DOI: https://doi.org/10.1039/B607713G.

  95. M. H. Weston, K. Nakajima, T. G. Back, J. Org. Chem., 2008, 73, 4630; DOI: https://doi.org/10.1021/jo800600a.

    Article  CAS  PubMed  Google Scholar 

  96. S. Medina, Á. González-Gómez, G. Domínguez, J. Pérez-Castells, Org. Biomol. Chem., 2012, 10, 7167; DOI: https://doi.org/10.1039/C2OB25755F.

    Article  CAS  PubMed  Google Scholar 

  97. A. A. Cant, G. H. Bertrand, J. L. Henderson, L. Roberts, M. F. Greaney, Angew. Chem., Int. Ed., 2009, 48, 5199; DOI: https://doi.org/10.1002/anie.200901410.

    Article  CAS  Google Scholar 

  98. M. Perscheid, D. Schollmeyer, U. Nubbemeyer, Eur. J. Org. Chem., 2011, 5250; DOI: https://doi.org/10.1002/ejoc.201100830.

  99. L. G. Voskressensky, A. A. Titov, M. S. Dzhankaziev, T. N. Borisova, M. S. Kobzev, P. V. Dorovatovskii, V. N. Khrustalev, A. V. Aksenov, A. V. Varlamov, New J. Chem., 2017, 41, 1902; DOI: https://doi.org/10.1039/C6NJ03403A.

    Article  CAS  Google Scholar 

  100. A. A. Titov, M. Niso, M. Candia, M. S. Kobzev, A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, N. A. Colabufo, S. Cellamare, L. Pisani, C. D. Altomare, Future Med. Chem., 2019, 11, 2095; DOI: https://doi.org/10.4155/fmc-2019-0037.

    Article  CAS  PubMed  Google Scholar 

  101. L. G. Voskressensky, R. Samavati, A. A. Titov, E. V. Alexandrova, N. Y. Chernikova, A. V. Varlamov, Chem. Heterocycl. Compd., 2018, 54(5), 576; DOI: https://doi.org/10.1007/s10593-018-2306-y.

    Article  CAS  Google Scholar 

  102. L. Candish, D. W. Lupton, J. Am. Chem. Soc., 2013, 135, 58; DOI: https://doi.org/10.1021/ja310449k.

    Article  CAS  PubMed  Google Scholar 

  103. J. P. Marino, R. F. Pradilla, J. Am. Chem. Soc., 1984, 106, 1644; DOI: https://doi.org/10.1021/ja00336a067.

    Article  Google Scholar 

  104. K. C. Majumdar, S. Ghosh, A. K. Kundu, Synth. Commun., 2002, 32, 753; DOI: https://doi.org/10.1081/SCC-120002515.

    Article  CAS  Google Scholar 

  105. J. Kaeobamrung, J. Mahatthananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc., 2010, 132, 8810; DOI: https://doi.org/10.1021/ja103631u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. T. Ito, L. E. Overman, J. Wang, J. Am. Chem. Soc., 2010, 132, 3272; DOI: https://doi.org/10.1021/ja100607z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Z. D. Aron, T. Ito, T. L. May, L. E. Overman, J. Wang, J. Org. Chem., 2013, 78, 9929; DOI: https://doi.org/10.1021/jo4018099.

    Article  CAS  PubMed  Google Scholar 

  108. J. Cossy, C. Poitevina, L. Salléb, D. Gomez Pardoa, Tetrahedron Lett., 1996, 37, 6709; DOI: https://doi.org/10.1016/S0040-4039(96)01467-0.

    Article  CAS  Google Scholar 

  109. L. V. Reis, A. M. Lobo, S. Prabhakar, M. P. Duarte, Eur. J. Org. Chem., 2003, 1, 190; DOI: https://doi.org/10.1002/1099-0690(200301)2003:1<190::AID-EJOC190>3.0.CO;2-W.

    Article  Google Scholar 

  110. A. Mirzaei, X. S. Peng, H. N. Wong, Org. Lett., 2019, 21, 3795; DOI: https://doi.org/10.1021/acs.orglett.9b01250.

    Article  CAS  PubMed  Google Scholar 

  111. S. M. Roberts, C. Smith, R. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1990, 1493; DOI: https://doi.org/10.1039/P19900001493.

  112. R. Maurya, C. A. Pittol, R. J. Pryce, S. M. Roberts, R. J. Thomas, J. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1992, 1617; DOI: https://doi.org/10.1039/p19920001617.

  113. E. W. Baxter, D. Labaree, H. L. Ammon, P. S. Mariano, J. Am. Chem. Soc., 1990, 112, 7682; DOI: https://doi.org/10.1021/ja00177a032.

    Article  CAS  Google Scholar 

  114. F. Berti, A. Menichetti, V. Di Bussolo, L. Favero, M. Pineschi, Chem. Heterocycl. Comp., 2018, 54, 458; DOI: https://doi.org/10.1007/s10593-018-2289-8.

    Article  CAS  Google Scholar 

  115. L. Viallon, O. Reinaud, P. Capdevielle, P. Maumy, Tetra hedron Lett., 1995, 36, 4787; DOI: https://doi.org/10.1016/0040-4039(95)00866-B.

    CAS  Google Scholar 

  116. S. Müller, M. J. Webber, B. List, J. Am. Chem. Soc., 2011, 133, 18534; DOI: https://doi.org/10.1021/ja2092163.

    Article  PubMed  CAS  Google Scholar 

  117. A. Martínez, M. J. Webber, S. Müller, B. List, Angew. Chem., Int. Ed., 2013, 52, 9486; DOI: https://doi.org/10.1002/anie.201301618.

    Article  CAS  Google Scholar 

  118. A. Martínez, M. J. Webber, S. Müller, B. List, Angew. Chem., 2013, 125, 9664; DOI: https://doi.org/10.1002/ange.201301618.

    Article  Google Scholar 

  119. L. Kötzner, M. J. Webber, A. Martínez, C. D. Fusco, B. List, Angew. Chem., Int. Ed., 2014, 53, 5202; DOI: https://doi.org/10.1002/anie.201400474.

    Google Scholar 

  120. L. Kötzner, M. J. Webber, A. Martínez, C. D. Fusco, B. List, Angew. Chem., 2014, 126, 5303; DOI: https://doi.org/10.1002/ange.201400474.

    Article  Google Scholar 

  121. I. K. Park, J. Park, C. G. Cho, Angew. Chem., 2012, 124(10), 2546; DOI: https://doi.org/10.1002/anie.201108970.

    Article  Google Scholar 

  122. A. Chakraborty, K. Goswami, A. Adiyala, S. Sinha, Eur. J. Org. Chem., 2013, 7117; DOI: https://doi.org/10.1002/ejoc.201300888.

  123. E. B. Hay, H. Zhang, D. P. Curran, J. Am. Chem. Soc., 2015, 137, 322; DOI: https://doi.org/10.1021/ja510608u.

    Article  CAS  PubMed  Google Scholar 

  124. D. D. Schwarzer, P. J. Gritsch, T. Gaich, Angew. Chem., Int. Ed., 2012, 51, 11514; DOI: https://doi.org/10.1002/anie.201203586.

    Article  CAS  Google Scholar 

  125. D. D. Schwarzer, P. J. Gritsch, T. Gaich, Synlett, 2013, 24, 1025; DOI: https://doi.org/10.1055/s-0032-1318501.

    Article  CAS  Google Scholar 

  126. J. W. Tucker, C. J. Stephenson, Org. Lett., 2011, 13, 5468; DOI: https://doi.org/10.1021/ol202178t.

    Article  CAS  PubMed  Google Scholar 

  127. L. Li, X. Q. Zhu, Y. Q. Zhang, H. Z. Bu, P. Yuan, J. Chen, J. Su, X. Deng, L. W. Ye, Chem. Sci., 2019, 10, 3123; DOI: https://doi.org/10.1039/C9SC00079H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. M. Ueda, Y. Ito, Y. Ichii, M. Kakiuchi, H. Shono, O. Miyata, Chem. Eur. J., 2014, 20, 6763; DOI: https://doi.org/10.1002/chem.201402217.

    Article  CAS  PubMed  Google Scholar 

  129. M. M. A. Pereira, S. Prabhakar, A. M. A. Lobo, J. Nat. Prod., 1996, 59, 744; DOI: https://doi.org/10.1021/np9601869.

    Article  CAS  PubMed  Google Scholar 

  130. N. Takeda, O. Miyata, T. Naito, Eur. J. Org. Chem., 2007, 1491; DOI: https://doi.org/10.1002/ejoc.200601001.

  131. K. C. Majumdar, P. Chatterjee, S. Saha, Tetrahedron Lett., 1998, 39, 7147; DOI: https://doi.org/10.1016/S0040-4039(98)01528-7.

    Article  CAS  Google Scholar 

  132. K. C. Majumdar, U. Das, J. Org. Chem., 1998, 63, 9997; DOI: https://doi.org/10.1021/jo972058a.

    Article  CAS  Google Scholar 

  133. K. C. Majumdar, U. K. Kundu, S. K. Ghosh, Org. Lett., 2002, 4, 2629; DOI: https://doi.org/10.1021/ol020088g.

    Article  CAS  PubMed  Google Scholar 

  134. K. C. Majumdar, D. P. Das, G. H. Jana, Synth. Commun., 1993, 23, 2171; DOI: https://doi.org/10.1080/00397919308018612.

    Article  CAS  Google Scholar 

  135. K. C. Majumdar, A. K. Kundu, P. Biswas, Heterocycles, 1999, 51, 471; DOI: https://doi.org/10.3987/COM-98-8409.

    Article  CAS  Google Scholar 

  136. K. C. Majumdar, S. K. Ghosh, Synth. Commun., 2002, 32, 1271; DOI: https://doi.org/10.1081/SCC-120003620.

    Article  CAS  Google Scholar 

  137. K. C. Majumdar, A. Bandyopadhyay, A. Biswas, Tetrahedron, 2003, 59, 5289; DOI: https://doi.org/10.1016/S0040-4020(03)00784-1.

    Article  CAS  Google Scholar 

  138. S. K. Samanta, K. C. Majumdar, Heterocycl. Synth. Commun., 2006, 36, 1299; DOI: https://doi.org/10.1080/00397910500518924.

    Article  CAS  Google Scholar 

  139. S. K. Ghosh, J. Appl. Chem., 2015, 60; DOI: https://doi.org/10.9790/5736-08916063.

  140. K. C. Majumdar, R. Islam, Can. J. Chem., 2006, 84, 1632; DOI: https://doi.org/10.1139/v06-174.

    Article  CAS  Google Scholar 

  141. P. E. da Silva Júnior, N. M. de Araujo, F. da Silva Emery, J. Heterocycl. Chem., 2015, 52, 518; DOI: https://doi.org/10.1002/jhet.2087.

    Article  CAS  Google Scholar 

  142. A. L. Perez, G. Lamoureux, A. Sanchez-Kopper, Tetrahedron Lett., 2007, 48, 3735; DOI: https://doi.org/10.1016/j.tetlet.2007.03.090.

    Article  CAS  Google Scholar 

  143. Miyata, N. Takeda, T. Naito, Org. Lett., 2004, 6, 1761; DOI: https://doi.org/10.1021/ol049564o.

    Article  CAS  PubMed  Google Scholar 

  144. L. Barriault, I. Denissova, Org. Lett., 2002, 4, 1371; DOI: https://doi.org/10.1021/ol025694q.

    Article  CAS  PubMed  Google Scholar 

  145. J. M. Warrington, L. Barriault, Org. Lett., 2005, 7, 4589; DOI: https://doi.org/10.1021/ol051715f.

    Article  CAS  PubMed  Google Scholar 

  146. L. Barriault, I. Denissova, N. Goulet, Synthesis, 2012, 1833; DOI: https://doi.org/10.1055/s-0031-1291144.

  147. S. H. Pine, R. Zahler, D. A. Evans, R. H. Grubbs, J. Am. Chem. Soc., 1980, 102, 3270; DOI: https://doi.org/10.1021/ja00529a076.

    Article  CAS  Google Scholar 

  148. R. E. Ireland, M. D. Varney, J. Org. Chem., 1983, 48, 1829; DOI: https://doi.org/10.1021/jo00159a008.

    Article  CAS  Google Scholar 

  149. C. M. G. Philippo, H. Vo Nha, L. A. Paquette, J. Am. Chem. Soc., 1991, 113, 2762; DOI: https://doi.org/10.1021/ja00007a066.

    Article  CAS  Google Scholar 

  150. L. A. Paquette, L.-Q. Sun, D. Friedrich, P. B. Savage, J. Am. Chem. Soc., 1997, 119, 8438; DOI: https://doi.org/10.1021/ja971526v.

    Article  CAS  Google Scholar 

  151. B. Ganem, Angew. Chem., Int. Ed. Engl., 1996, 35, 936; DOI: https://doi.org/10.1002/anie.19960936.

    Article  CAS  Google Scholar 

  152. D. Enders, M. Knopp, R. Schiffers, Tetrahedron: Asymmetry, 1996, 7, 1847; DOI: https://doi.org/10.1016/0957-4166(96)00220-0.

    Article  CAS  Google Scholar 

  153. H. Ito, T. Taguchi, Chem. Soc. Rev., 1999, 28, 43; DOI: https://doi.org/10.1039/A706415B.

    Article  CAS  Google Scholar 

  154. Y. Chai, S.-P. Hong, H. A. Lindsay, C. McFarland, M. C. McIntosh, Tetrahedron, 2002, 58, 2905; DOI: https://doi.org/10.1016/S0040-4020(02)00164-3.

    Article  CAS  Google Scholar 

  155. M. Hiersemann, L. Abraham, Eur. J. Org. Chem., 2002, 1461; DOI: https://doi.org/10.1002/1099-0690(200205)2002:9<1461::AID-EJOC1461>3.0.CO;2-1.

  156. U. Nubbemeyer, Synthesis, 2003, 961; DOI: https://doi.org/10.1055/s-2003-39171.

  157. A. M. Martin Castro, Chem. Rev., 2004, 104, 2939; DOI: https://doi.org/10.1021/cr020703.

    Article  PubMed  CAS  Google Scholar 

  158. J. Borgulya, R. Madeja, Fahrni, H. J. Hansen, H. Schmid, R. Barner, Helv. Chim. Acta, 1973, 56, 14; DOI: https://doi.org/10.1002/hlca.19730560103.

    Article  CAS  Google Scholar 

  159. F. Ito, K. Fusegi, T. Kumamoto, T. Ishikawa, Synthesis, 2007, 1785; DOI: https://doi.org/10.1055/s-2007-983712.

  160. S. Levin, R. R. Nani, S. E. Reisman, J. Am. Chem. Soc., 2011, 133, 774; DOI: https://doi.org/10.1021/ja110192b.

    Article  CAS  PubMed  Google Scholar 

  161. Y. Aoyagi, A. Yamazaki, C. Nakatsugawa, H. Fukaya, K. Takeya, S. Kawauchi, H. Izumi, Org. Lett., 2008, 10, 4429; DOI: https://doi.org/10.1021/ol801620u.

    Article  CAS  PubMed  Google Scholar 

  162. X. Li, T. V. Ovasaka, Org. Lett., 2007, 9, 3837; DOI: https://doi.org/10.1021/ol701633z.

    Article  CAS  PubMed  Google Scholar 

  163. X. Li, R. E. Kyne, T. V. Ovasaka, Tetrahedron, 2007, 63, 1899; DOI: https://doi.org/10.1016/j.tet.2006.12.057.

    Article  CAS  Google Scholar 

  164. A. Sabahi, J. D. Rainier, Arkivoc, 2010, 8, 116; DOI: https://doi.org/10.3998/ark.5550190.0011.811.

    Article  Google Scholar 

  165. J. D. Eckerbarger, J. T. Wilmot, D. Y. Gin, J. Am. Chem. Soc., 2006, 128, 10370; DOI: https://doi.org/10.1021/ja063304f.

    Article  CAS  Google Scholar 

  166. M. M. Cid, U. Eggnauer, H. P. Weber, E. Pombo-Villar, Tetrahedron Lett., 1991, 32, 7233; DOI: https://doi.org/10.1016/0040-4039(91)80484-N.

    Article  CAS  Google Scholar 

  167. T. Momose, N. Hama, C. Higashino, H. Sato, N. Chida, Tetrahedron Lett., 2008, 49, 1376; DOI: https://doi.org/10.1016/j.tetlet.2007.12.080.

    Article  CAS  Google Scholar 

  168. R. B. Woodward, P. Cava Michael, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, J. Am. Chem. Soc., 1954, 76, 4749; DOI: https://doi.org/10.1021/ja01647a088.

    Article  CAS  Google Scholar 

  169. J. M. Smith, J. Moreno, B. W. Boal, N. K. Garg, J. Am. Chem. Soc., 2014, 136, 4504; DOI: https://doi.org/10.1021/ja501780w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. A. W. Schammel, G. Chiou, N. K. Garg, Org. Lett., 2012, 14, 4556; DOI: https://doi.org/10.1021/ol302023q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. A. W. Schammel, G. Chiou, N. K. Garg, J. Org. Chem., 2012, 77, 725; DOI: https://doi.org/10.1021/jo202078z.

    Article  CAS  PubMed  Google Scholar 

  172. L. Zu, B. W. Boal, N. K. Garg, J. Am. Chem. Soc., 2011, 133, 8877; DOI: https://doi.org/10.1021/ja203227q.

    Article  CAS  PubMed  Google Scholar 

  173. H. W. Davies, Y. Lian, Acc. Chem. Res., 2012, 45, 923; DOI: https://doi.org/10.1021/ar300013t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. N. Graulich, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 172; DOI: https://doi.org/10.1002/wcms.17.

    Article  CAS  Google Scholar 

  175. V. Staroverov, E. R. Davidson, Theochem., 2001, 573, 81; DOI: https://doi.org/10.1016/S0166-1280(01)00536-X.

    Article  CAS  Google Scholar 

  176. J. Nowicki, Molecules, 2000, 5, 1033; DOI: https://doi.org/10.3390/50801033.

    Article  CAS  Google Scholar 

  177. R. P. Lutz, Chem. Rev., 1984, 84, 205; DOI: https://doi.org/10.1021/cr00061a001.

    Article  CAS  Google Scholar 

  178. S. Kruger, T. Gaich, Beilstein J. Org. Chem., 2014, 10, 163; DOI: https://doi.org/10.3762/bjoc.10.14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. E. N. Marvell, C. Lin, Tetrahedron Lett., 1973, 29, 2679; DOI: https://doi.org/10.1016/S0040-4039(01)96111-8.

    Article  Google Scholar 

  180. G. Maas, Chem. Ber., 1979, 112, 3241; DOI: https://doi.org/10.1002/cber.19791120921.

    Article  CAS  Google Scholar 

  181. D. Armesto, A. Ramos, E. P. Mayoral, M. J. Ortiz, A. R. Agarrabeitia, Org. Lett., 2000, 2, 183; DOI: https://doi.org/10.1021/ol991277a.

    Article  CAS  PubMed  Google Scholar 

  182. J. Barluenga, F. Aznar, I. Gutiérrez, A. J. Martín, Org. Lett., 2002, 4, 2719; DOI: https://doi.org/10.1021/ol026225r.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kobzev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1213–1259, July, 2021.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-13-50451). The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobzev, M.S., Titov, A.A. & Varlamov, A.V. Synthesis of heterocyclic systems involving [3,3]-sigmatropic rearrangements. Russ Chem Bull 70, 1213–1259 (2021). https://doi.org/10.1007/s11172-021-3208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3208-1

Keywords

Navigation