Abstract
Drop deposition of a carboxylated multi-walled carbon nanotube suspension and layer-by-layer electrochemical deposition of silver and palladium were used to modify thick-film carbon electrodes. The modified electrodes exhibited a pronounced catalytic activity in the electrochemical oxidation of glucose in a neutral medium. The results can be used to develop an enzymefree electrocatalytic sensor for quantitative determination of glucose.
This is a preview of subscription content, access via your institution.
References
T. Semashko, A. Lobanok, A. Shtyrov, E. Mikhalenok, A. Bel’skaya, Nauka i Innovatsii [Science and Innovations], 2018, 73 (in Russian).
D. R. P. Steven Schreiner, Joseph D. Bronzino, Medical Instruments and Devices: Principles and Practices, CRC Press, Taylor & Francis Group, Boca Raton, 2016, 310 pp.
A. Okhokhonin, V. Stepanova, N. Malysheva, A. Matern, A. Kozitsina, Electroanalysis, 2021, 33, 111; DOI: https://doi.org/10.1002/elan.202060177.
A. B. Urgunde, A. R. Kumar, K. P. Shejale, R. K. Sharma, R. Gupta, ACS Appl. Nano Mater., 2018, 1, 5571; DOI: https://doi.org/10.1021/acsanm.8b01115.
Y. Ji, J. Liu, X. Liu, M. M. F. Yuen, X. Z. Fu, Y. Yang, R. Sun, C. P. Wong, Electrochim. Acta, 2017, 248, 299; DOI: https://doi.org/10.1016/j.electacta.2017.07.100.
A. N. Kozitsina, S. S. Dedeneva, Z. V. Shalygina, A. V. Okhokhonin, D. L. Chizhov, A. I. Matern, K. Z. Brainina, J. Anal. Chem., 2014, 69, 758; DOI: https://doi.org/10.1134/s1061934814080048.
T. R. Madhura, G. G. Kumar, R. Ramaraj, J. Solid State Electrochem., 2020, 24, 3073; DOI: https://doi.org/10.1007/s10008-020-04763-3.
A. N. Kozitsina, A. V. Okhokhonin, A. I. Matern, J. Electroanal. Chem., 2016, 772, 89; DOI: https://doi.org/10.1016/j.jelechem.2016.04.029.
K. Derina, E. Korotkova, J. Barek, J. Pharm. Biomed. Anal., 2020, 113538; DOI: https://doi.org/10.1016/j.jpba.2020.113538.
C. Zhang, F. Li, S. Huang, M. Li, T. Guo, C. Mo, X. Pang, L. Chen, X. Li, J. Colloid Interface Sci., 2019, 557, 825; DOI: https://doi.org/10.1016/j.jcis.2019.09.076.
B. Kurt Urhan, Ü. Demir, T. Öznülüer Özer, and H. Öztürk Doğan, Thin Solid Films, 2020, 693, 137695; DOI: https://doi.org/10.1016/j.tsf.2019.137695.
M. Liu, Y. Wang, H. Zhang, Z. Jiang, RSC Adv., 2019, 9, 6613; DOI: https://doi.org/10.1039/c8ra09749f.
A. R. Abbasi, M. Yousefshahi, K. Daasbjerg, J. Inorg. Organomet. Polym. Mater., 2020, 30, 2027; DOI: https://doi.org/10.1007/s10904-020-01452-6.
M. Lu, Y. Deng, Y. Li, T. Li, J. Xu, S. W. Chen, J. Wang, Anal. Chim. Acta, 2020, 1110, 35; DOI: https://doi.org/10.1016/j.aca.2020.02.023.
S. Malhotra, Y. Tang, P. K. Varshney, Chem. Pap., 2019, 73, 1987; DOI: https://doi.org/10.1007/s11696-019-00752-7.
Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, R. Ouyang, Biosens. Bioelectron., 2014, 53, 428; DOI: https://doi.org/10.1016/j.bios.2013.10.008.
S. J. Cho, H.-B. Noh, M.-S. Won, C.-H. Cho, K. B. Kim, Y.-B. Shim, Biosens. Bioelectron., 2018, 99, 471; DOI: https://doi.org/10.1016/j.bios.2017.08.022.
A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding, R. D. Tilley, Nanoscale, 2019, 11, 18995; DOI: https://doi.org/10.1039/c9nr05802h.
M. J. S. Farias, J. M. Feliu, Top. Curr. Chem., 2019, 377, 5; DOI: https://doi.org/10.1007/s41061-018-0228-x.
A. V. Okhokhonin, S. Yu. Saraeva, A. I. Matern, A. N. Kozitsina, J. Anal. Chem. (Engl. Transl.) 2017, 72, 354; DOI: https://doi.org/10.7868/s0044450217040132.
M. A. Komkova, E. E. Karyakina, A. A. Karyakin, J. Am. Chem. Soc., 2018, 140, 11302; DOI: https://doi.org/10.1021/jacs.8b05223.
Handbook of Organopalladium Chemistry for Organic Synthesis, Ed. E. Negishi, John Wiley & Sons, Inc., New York, USA, 2002; DOI: https://doi.org/10.1002/0471212466.
X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci., 2017, 10, 402; DOI: https://doi.org/10.1039/c6ee02265k.
E. Antolini, Energy Environ. Sci., 2009, 2, 915; DOI: https://doi.org/10.1039/b820837a.
L. Yang, B. Zhang, B. Xu, F. Zhao, B. Zeng, Talanta, 2021, 224, 121845; DOI: https://doi.org/10.1016/j.talanta.2020.121845.
G. Kenne Dedzo, E. Pameté Yambou, M. R. Topet Saheu, G. Ngnie, C. P. Nanseu-Njiki, C. Detellier, E. Ngameni, J. Electroanal. Chem., 2017, 801, 49; DOI: https://doi.org/10.1016/j.jelechem.2017.07.030.
P. B. Deroco, I. G. Melo, L. S. R. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, O. Fatibello-Filho, Sensors Actuators, B, 2018, 256, 535; DOI: https://doi.org/10.1016/j.snb.2017.10.107.
K. Samoson, P. Thavarungkul, P. Kanatharana, W. Limbut, J. Electrochem. Soc., 2019, 166, B1079; DOI: https://doi.org/10.1149/2.1381912jes.
A. Cid, J. Simal-Gandara, J. Inorg. Organomet. Polym. Mater., 2020, 30, 1011; DOI: https://doi.org/10.1007/s10904-019-01331-9.
N. R. Elezovic, P. Zabinski, M. N. Krstajic Pajic, T. Tokarski, B. M. Jovic, V. D. Jovic, J. Serbian Chem. Soc., 2018, 83, 593; DOI: https://doi.org/10.2298/JSC171103011E.
B. I. Podlovchenko, Y. M. Maksimov, A. G. Utkin, Russ. J. Electrochem., 2015, 51, 891; DOI: https://doi.org/10.1134/S1023193515100110.
J. Sun, Y. Li, Y. Liu, W. Zhou, X. Zhen, M. F. Lang, Int. J. Hydrogen Energy, 2019, 44, 5990; DOI: https://doi.org/10.1016/j.ijhydene.2019.01.138.
R. R. Fazleeva, G. R. Nasretdinova, Yu. N. Osin, A. Yu. Ziganshina, V. V Yanilkin, Russ. Chem. Bull., 2020, 69, 241; DOI: https://doi.org/10.1007/s11172-020-2752-4.
C. Li, Y. Xu, H. Yu, K. Deng, S. Liu, Z. Wang, X. Li, L. Wang, H. Wang, Nanotechnology, 2020, 31, 045401; DOI: https://doi.org/10.1088/1361-6528/ab49ae.
M. A. Pozdniakov, I. V. Zhuk, M. V. Lyapunova, A. S. Salikov, V. V. Botvin, A. G. Filimoshkin, Russ. Chem. Bull., 2019, 68, 472; DOI: https://doi.org/10.1007/s11172-019-2442-2.
J. D. Lović, N. R. Elezović, B. M. Jović, P. Zabinski, L. Gajić-Krstajić, V. D. Jović, Int. J. Hydrogen Energy, 2018, 43, 18498; DOI: https://doi.org/10.1016/j.ijhydene.2018.08.056.
N. Abbasi, P. Shahbazi, A. Kiani, J. Mater. Chem. A, 2013, 1, 9966; DOI: https://doi.org/10.1039/c3ta10706j.
Q. Wang, J. Zheng, H. Zhang, J. Electroanal. Chem., 2012, 674, 1; DOI: https://doi.org/10.1016/j.jelechem.2012.02.009.
M. Vega-Cartagena, E. M. Flores-Vélez, G. S. Colón-Quintana, D. A. Blasini Pérez, M. A. De Jesús, C. R. Cabrera, ACS Appl. Energy Mater., 2019, 2, 4664; DOI: https://doi.org/10.1021/acsaem.9b00038.
N. Shishegari, A. Sabahi, F. Manteghi, A. Ghaffarinejad, Z. Tehrani, J. Electroanal. Chem., 2020, 871, 114285; DOI: https://doi.org/10.1016/j.jelechem.2020.114285.
M. Waqas, J. Lan, X. Zhang, Y. Fan, P. Zhang, C. Liu, Z. Jiang, X. Wang, J. Zeng, W. Chen, Electroanalysis, 2020, 32, 1226; DOI: https://doi.org/10.1002/elan.201900705.
L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 2009, 81, 7271; DOI: https://doi.org/10.1021/ac901005p.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1191–1198, June, 2021.
The study was financially supported by the Russian Science Foundation (Project No. 20-13-00142).
This paper does not contain descriptions of experiments on animals or humans.
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Okhokhonin, A.V., Tokmakova, K.O., Svalova, T.S. et al. Electrocatalytic oxidation of glucose in a neutral medium on an electrode modified by carboxylated multi-walled carbon nanotubes and by silver and palladium. Russ Chem Bull 70, 1191–1198 (2021). https://doi.org/10.1007/s11172-021-3204-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11172-021-3204-5
Key words
- chronoamperometry
- voltammetry
- electrocatalysis
- silver
- palladium
- layer-by-layer electrochemical deposition
- glucose