Skip to main content

Electrocatalytic oxidation of glucose in a neutral medium on an electrode modified by carboxylated multi-walled carbon nanotubes and by silver and palladium

Abstract

Drop deposition of a carboxylated multi-walled carbon nanotube suspension and layer-by-layer electrochemical deposition of silver and palladium were used to modify thick-film carbon electrodes. The modified electrodes exhibited a pronounced catalytic activity in the electrochemical oxidation of glucose in a neutral medium. The results can be used to develop an enzymefree electrocatalytic sensor for quantitative determination of glucose.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Semashko, A. Lobanok, A. Shtyrov, E. Mikhalenok, A. Bel’skaya, Nauka i Innovatsii [Science and Innovations], 2018, 73 (in Russian).

  2. 2.

    D. R. P. Steven Schreiner, Joseph D. Bronzino, Medical Instruments and Devices: Principles and Practices, CRC Press, Taylor & Francis Group, Boca Raton, 2016, 310 pp.

    Google Scholar 

  3. 3.

    A. Okhokhonin, V. Stepanova, N. Malysheva, A. Matern, A. Kozitsina, Electroanalysis, 2021, 33, 111; DOI: https://doi.org/10.1002/elan.202060177.

    CAS  Article  Google Scholar 

  4. 4.

    A. B. Urgunde, A. R. Kumar, K. P. Shejale, R. K. Sharma, R. Gupta, ACS Appl. Nano Mater., 2018, 1, 5571; DOI: https://doi.org/10.1021/acsanm.8b01115.

    CAS  Article  Google Scholar 

  5. 5.

    Y. Ji, J. Liu, X. Liu, M. M. F. Yuen, X. Z. Fu, Y. Yang, R. Sun, C. P. Wong, Electrochim. Acta, 2017, 248, 299; DOI: https://doi.org/10.1016/j.electacta.2017.07.100.

    CAS  Article  Google Scholar 

  6. 6.

    A. N. Kozitsina, S. S. Dedeneva, Z. V. Shalygina, A. V. Okhokhonin, D. L. Chizhov, A. I. Matern, K. Z. Brainina, J. Anal. Chem., 2014, 69, 758; DOI: https://doi.org/10.1134/s1061934814080048.

    CAS  Article  Google Scholar 

  7. 7.

    T. R. Madhura, G. G. Kumar, R. Ramaraj, J. Solid State Electrochem., 2020, 24, 3073; DOI: https://doi.org/10.1007/s10008-020-04763-3.

    CAS  Article  Google Scholar 

  8. 8.

    A. N. Kozitsina, A. V. Okhokhonin, A. I. Matern, J. Electroanal. Chem., 2016, 772, 89; DOI: https://doi.org/10.1016/j.jelechem.2016.04.029.

    CAS  Article  Google Scholar 

  9. 9.

    K. Derina, E. Korotkova, J. Barek, J. Pharm. Biomed. Anal., 2020, 113538; DOI: https://doi.org/10.1016/j.jpba.2020.113538.

  10. 10.

    C. Zhang, F. Li, S. Huang, M. Li, T. Guo, C. Mo, X. Pang, L. Chen, X. Li, J. Colloid Interface Sci., 2019, 557, 825; DOI: https://doi.org/10.1016/j.jcis.2019.09.076.

    CAS  Article  Google Scholar 

  11. 11.

    B. Kurt Urhan, Ü. Demir, T. Öznülüer Özer, and H. Öztürk Doğan, Thin Solid Films, 2020, 693, 137695; DOI: https://doi.org/10.1016/j.tsf.2019.137695.

    CAS  Article  Google Scholar 

  12. 12.

    M. Liu, Y. Wang, H. Zhang, Z. Jiang, RSC Adv., 2019, 9, 6613; DOI: https://doi.org/10.1039/c8ra09749f.

    CAS  Article  Google Scholar 

  13. 13.

    A. R. Abbasi, M. Yousefshahi, K. Daasbjerg, J. Inorg. Organomet. Polym. Mater., 2020, 30, 2027; DOI: https://doi.org/10.1007/s10904-020-01452-6.

    Article  Google Scholar 

  14. 14.

    M. Lu, Y. Deng, Y. Li, T. Li, J. Xu, S. W. Chen, J. Wang, Anal. Chim. Acta, 2020, 1110, 35; DOI: https://doi.org/10.1016/j.aca.2020.02.023.

    CAS  Article  Google Scholar 

  15. 15.

    S. Malhotra, Y. Tang, P. K. Varshney, Chem. Pap., 2019, 73, 1987; DOI: https://doi.org/10.1007/s11696-019-00752-7.

    CAS  Article  Google Scholar 

  16. 16.

    Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, R. Ouyang, Biosens. Bioelectron., 2014, 53, 428; DOI: https://doi.org/10.1016/j.bios.2013.10.008.

    CAS  Article  Google Scholar 

  17. 17.

    S. J. Cho, H.-B. Noh, M.-S. Won, C.-H. Cho, K. B. Kim, Y.-B. Shim, Biosens. Bioelectron., 2018, 99, 471; DOI: https://doi.org/10.1016/j.bios.2017.08.022.

    CAS  Article  Google Scholar 

  18. 18.

    A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding, R. D. Tilley, Nanoscale, 2019, 11, 18995; DOI: https://doi.org/10.1039/c9nr05802h.

    CAS  Article  Google Scholar 

  19. 19.

    M. J. S. Farias, J. M. Feliu, Top. Curr. Chem., 2019, 377, 5; DOI: https://doi.org/10.1007/s41061-018-0228-x.

    Article  Google Scholar 

  20. 20.

    A. V. Okhokhonin, S. Yu. Saraeva, A. I. Matern, A. N. Kozitsina, J. Anal. Chem. (Engl. Transl.) 2017, 72, 354; DOI: https://doi.org/10.7868/s0044450217040132.

    CAS  Article  Google Scholar 

  21. 21.

    M. A. Komkova, E. E. Karyakina, A. A. Karyakin, J. Am. Chem. Soc., 2018, 140, 11302; DOI: https://doi.org/10.1021/jacs.8b05223.

    CAS  Article  Google Scholar 

  22. 22.

    Handbook of Organopalladium Chemistry for Organic Synthesis, Ed. E. Negishi, John Wiley & Sons, Inc., New York, USA, 2002; DOI: https://doi.org/10.1002/0471212466.

    Google Scholar 

  23. 23.

    X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci., 2017, 10, 402; DOI: https://doi.org/10.1039/c6ee02265k.

    CAS  Article  Google Scholar 

  24. 24.

    E. Antolini, Energy Environ. Sci., 2009, 2, 915; DOI: https://doi.org/10.1039/b820837a.

    CAS  Article  Google Scholar 

  25. 25.

    L. Yang, B. Zhang, B. Xu, F. Zhao, B. Zeng, Talanta, 2021, 224, 121845; DOI: https://doi.org/10.1016/j.talanta.2020.121845.

    CAS  Article  Google Scholar 

  26. 26.

    G. Kenne Dedzo, E. Pameté Yambou, M. R. Topet Saheu, G. Ngnie, C. P. Nanseu-Njiki, C. Detellier, E. Ngameni, J. Electroanal. Chem., 2017, 801, 49; DOI: https://doi.org/10.1016/j.jelechem.2017.07.030.

    CAS  Article  Google Scholar 

  27. 27.

    P. B. Deroco, I. G. Melo, L. S. R. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, O. Fatibello-Filho, Sensors Actuators, B, 2018, 256, 535; DOI: https://doi.org/10.1016/j.snb.2017.10.107.

    CAS  Article  Google Scholar 

  28. 28.

    K. Samoson, P. Thavarungkul, P. Kanatharana, W. Limbut, J. Electrochem. Soc., 2019, 166, B1079; DOI: https://doi.org/10.1149/2.1381912jes.

    CAS  Article  Google Scholar 

  29. 29.

    A. Cid, J. Simal-Gandara, J. Inorg. Organomet. Polym. Mater., 2020, 30, 1011; DOI: https://doi.org/10.1007/s10904-019-01331-9.

    CAS  Article  Google Scholar 

  30. 30.

    N. R. Elezovic, P. Zabinski, M. N. Krstajic Pajic, T. Tokarski, B. M. Jovic, V. D. Jovic, J. Serbian Chem. Soc., 2018, 83, 593; DOI: https://doi.org/10.2298/JSC171103011E.

    Article  Google Scholar 

  31. 31.

    B. I. Podlovchenko, Y. M. Maksimov, A. G. Utkin, Russ. J. Electrochem., 2015, 51, 891; DOI: https://doi.org/10.1134/S1023193515100110.

    CAS  Article  Google Scholar 

  32. 32.

    J. Sun, Y. Li, Y. Liu, W. Zhou, X. Zhen, M. F. Lang, Int. J. Hydrogen Energy, 2019, 44, 5990; DOI: https://doi.org/10.1016/j.ijhydene.2019.01.138.

    CAS  Article  Google Scholar 

  33. 33.

    R. R. Fazleeva, G. R. Nasretdinova, Yu. N. Osin, A. Yu. Ziganshina, V. V Yanilkin, Russ. Chem. Bull., 2020, 69, 241; DOI: https://doi.org/10.1007/s11172-020-2752-4.

    CAS  Article  Google Scholar 

  34. 34.

    C. Li, Y. Xu, H. Yu, K. Deng, S. Liu, Z. Wang, X. Li, L. Wang, H. Wang, Nanotechnology, 2020, 31, 045401; DOI: https://doi.org/10.1088/1361-6528/ab49ae.

    CAS  Article  Google Scholar 

  35. 35.

    M. A. Pozdniakov, I. V. Zhuk, M. V. Lyapunova, A. S. Salikov, V. V. Botvin, A. G. Filimoshkin, Russ. Chem. Bull., 2019, 68, 472; DOI: https://doi.org/10.1007/s11172-019-2442-2.

    CAS  Article  Google Scholar 

  36. 36.

    J. D. Lović, N. R. Elezović, B. M. Jović, P. Zabinski, L. Gajić-Krstajić, V. D. Jović, Int. J. Hydrogen Energy, 2018, 43, 18498; DOI: https://doi.org/10.1016/j.ijhydene.2018.08.056.

    Article  Google Scholar 

  37. 37.

    N. Abbasi, P. Shahbazi, A. Kiani, J. Mater. Chem. A, 2013, 1, 9966; DOI: https://doi.org/10.1039/c3ta10706j.

    CAS  Article  Google Scholar 

  38. 38.

    Q. Wang, J. Zheng, H. Zhang, J. Electroanal. Chem., 2012, 674, 1; DOI: https://doi.org/10.1016/j.jelechem.2012.02.009.

    CAS  Article  Google Scholar 

  39. 39.

    M. Vega-Cartagena, E. M. Flores-Vélez, G. S. Colón-Quintana, D. A. Blasini Pérez, M. A. De Jesús, C. R. Cabrera, ACS Appl. Energy Mater., 2019, 2, 4664; DOI: https://doi.org/10.1021/acsaem.9b00038.

    CAS  Article  Google Scholar 

  40. 40.

    N. Shishegari, A. Sabahi, F. Manteghi, A. Ghaffarinejad, Z. Tehrani, J. Electroanal. Chem., 2020, 871, 114285; DOI: https://doi.org/10.1016/j.jelechem.2020.114285.

    CAS  Article  Google Scholar 

  41. 41.

    M. Waqas, J. Lan, X. Zhang, Y. Fan, P. Zhang, C. Liu, Z. Jiang, X. Wang, J. Zeng, W. Chen, Electroanalysis, 2020, 32, 1226; DOI: https://doi.org/10.1002/elan.201900705.

    CAS  Article  Google Scholar 

  42. 42.

    L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 2009, 81, 7271; DOI: https://doi.org/10.1021/ac901005p.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Okhokhonin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1191–1198, June, 2021.

The study was financially supported by the Russian Science Foundation (Project No. 20-13-00142).

This paper does not contain descriptions of experiments on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okhokhonin, A.V., Tokmakova, K.O., Svalova, T.S. et al. Electrocatalytic oxidation of glucose in a neutral medium on an electrode modified by carboxylated multi-walled carbon nanotubes and by silver and palladium. Russ Chem Bull 70, 1191–1198 (2021). https://doi.org/10.1007/s11172-021-3204-5

Download citation

Key words

  • chronoamperometry
  • voltammetry
  • electrocatalysis
  • silver
  • palladium
  • layer-by-layer electrochemical deposition
  • glucose