Skip to main content
Log in

2-Imino-6,7,8-trihydroacenaphthylen-1-amine: synthesis and reduction with sodium

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The hydrolysis of the tetrasodium salt of dpp-bian (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) affords the organic compound 1,6,7,8-H4-dpp-bian (1). This reaction is accompanied by the protonation of the nitrogen atom of the diimine moiety and one ring of the naphthalene system of the molecule. The reduction of 1 with one equivalent or an excess of sodium metal in 1,2-dimethoxyethane gives the salts [(6,7,8-H3-dpp-bian)Na(dme)2] (2a) and [(5,6,7,8-H4-dpp-bian)Na2(dme)2] (3), respectively. The exchange reaction of compound 1 with one equivalent of sodium amide in diethyl ether affords the monosodium salt [(6,7,8-H3-dpp-bian)Na(Et2O)2] (2b). Compounds 1–3 were characterized by NMR and IR spectroscopy and elemental analysis. The molecular structures of 1–3 were determined by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc., 1995, 117, 6414; DOI: https://doi.org/10.1021/ja00128a054.

    Article  CAS  Google Scholar 

  2. N. J. Hill, I. Vargas-Baca, A. H. Cowley, Dalton Trans., 2009, 2, 240; DOI: https://doi.org/10.1039/B815079F.

    Article  Google Scholar 

  3. I. L. Fedushkin, A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherkasov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 255; DOI: https://doi.org/10.1002/chem.201102243.

    Article  CAS  Google Scholar 

  4. I. L. Fedushkin, A. S. Nikipelov, K. A. Lyssenko, J. Am. Chem. Soc., 2010, 132, 7874; DOI: https://doi.org/10.1021/ja103467a.

    Article  CAS  Google Scholar 

  5. W. Zhang, V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, I. L. Fedushkin, P. W. Roesky, B. Wu, X.-J. Yang, Chem. Eur. J., 2018, 24, 14994; DOI: https://doi.org/10.1002/chem.201802469.

    Article  CAS  Google Scholar 

  6. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, X.-J. Yang, V. A. Chudakova, A. V. Piskunov, S. Demeshko, E. V. Baranov, Inorg. Chem., 2016, 55, 9047; DOI: https://doi.org/10.1021/acs.inorgchem.6b01514.

    Article  CAS  Google Scholar 

  7. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159; DOI: https://doi.org/10.1021/ic500259k.

    Article  CAS  Google Scholar 

  8. A. A. Skatova, N. L. Bazyakina, I. L. Fedushkin, A. V. Piskunov, N. O. Druzhkov, A. V. Cherkasov, Russ. Chem. Bull., 2019, 68, 275; DOI: https://doi.org/10.1007/s11172-019-2383-9.

    Article  CAS  Google Scholar 

  9. I. V. Ershova, A. V. Piskunov, V. K. Cherkasov, Russ. Chem. Rev., 2020, 89, 1157; DOI: https://doi.org/10.1070/RCR4957.

    Article  Google Scholar 

  10. I. L. Fedushkin, O. V. Maslova, A. G. Morozov, S. Dechert, S. Demeshko, F. Meyer, Angew. Chem., Int. Ed., 2012, 51, 10584; DOI: https://doi.org/10.1002/anie.201204452.

    Article  CAS  Google Scholar 

  11. I. L. Fedushkin, O. V. Maslova, E. V. Baranov, A. S. Shavyrin, Inorg. Chem., 2009, 48, 2355; DOI: https://doi.org/10.1021/ic900022s.

    Article  CAS  Google Scholar 

  12. I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, S. Dechert, H. Schumann, Eur. J. Inorg. Chem., 2003, 18, 3336; DOI: https://doi.org/10.1002/ejic.200300181.

    Article  Google Scholar 

  13. I. L. Fedushkin, A. N. Lukoyanov, A. N. Tishkina, G. K. Fukin, K. A. Lyssenko, M. Hummert, Chem. Eur. J., 2010, 16, 7563; DOI: https://doi.org/10.1002/chem.201000377.

    Article  CAS  Google Scholar 

  14. I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, Angew. Chem., Int. Ed., 2003, 42, 3294; DOI: https://doi.org/10.1002/anie.200351408.

    Article  CAS  Google Scholar 

  15. I. L. Fedushkin, A. N. Lukoyanov, E. V. Baranov, Inorg. Chem., 2018, 57, 4301; DOI: https://doi.org/10.1021/acs.inorgchem.7b03112.

    Article  CAS  Google Scholar 

  16. I. L. Fedushkin, D. A. Lukina, A. A. Skatova, A. N. Lukoyanov, A. V. Cherkasov, Chem. Commun., 2018, 54, 12950; DOI: https://doi.org/10.1039/c8cc08108e.

    Article  CAS  Google Scholar 

  17. D. A. Lukina, A. A. Skatova, A. N. Lukoyanov, E. A. Kozlova, I. L. Fedushkin, Dalton Trans., 2020, 49, 2941; DOI: https://doi.org/10.1039/c9dt04652f.

    Article  CAS  Google Scholar 

  18. M. V. Moskalev, D. A. Razborov, A. A. Skatova, A. A. Bazanov, I. L. Fedushkin, Eur. J. Inorg. Chem., 2021, 1, 458; DOI: https://doi.org/10.1002/ejic.202000909.

    Article  Google Scholar 

  19. D. A. Lukina, A. A. Skatova, V. G. Sokolov, E. V. Baranov, S. Demeshko, S. Yu. Ketkov, I. L. Fedushkin, Dalton Trans., 2020, 49, 14445; DOI: https://doi.org/10.1039/d0dt02963g.

    Article  CAS  Google Scholar 

  20. I. L. Fedushkin, V. A. Chudakova, G. K. Fukin, S. Dechert, M. Hummert, H. Schumann, Russ. Chem. Bull., 2004, 12, 2744; DOI: https://doi.org/10.1007/s11172-005-0185-8.

    Article  Google Scholar 

  21. M. Vigan, F. Ferretti, A. Caselli, F. Ragaini, M. Rossi, P. Mussini, P. Macchi, Chem. Eur. J., 2014, 20, 14451; DOI: https://doi.org/10.1002/chem.201403594.

    Article  Google Scholar 

  22. H. Türkmen, O. Sahin, O. Büyükgüngör, B. Çetinkaya, Eur. J. Inorg. Chem., 2006, 23, 4915; DOI: https://doi.org/10.1002/ejic.200600545.

    Article  Google Scholar 

  23. S. Dastgir, K. Coleman, A. Cowley, M. Green, Dalton Trans., 2009, 35, 7203; DOI: https://doi.org/10.1039/b905729c.

    Article  Google Scholar 

  24. A. A. Paulovicova, U. El-Ayaan, K. Shibayama, T. Morita, Y. Fukuda, Eur. J. Inorg. Chem., 2001, 10, 2641; DOI: https://doi.org/10.1002/1099-0682(200109)2001:10<2641::AID-EJIC2641>3.0.CO;2-c.

    Article  Google Scholar 

  25. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.38.46 — Software Package, Rigaku OD, 2015.

  26. Bruker SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.

  27. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.

    Google Scholar 

  28. G. M. Sheldrick, SHELXTL, Version 6.14. Structure Determination Software Suite, Bruker AXS, Madison (WI), USA, 2003.

    Google Scholar 

  29. SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlisPro 1.171.38.46 — Software Package, Rigaku OD, 2015.

  30. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skatova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 908–915, May, 2021.

The study was performed within the framework of the state assignment using equipment of the Joint Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences.

No human or animal subjects were involved in this research.

The authors declare no conflict of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukina, D.A., Skatova, A.A., Lukoyanov, A.N. et al. 2-Imino-6,7,8-trihydroacenaphthylen-1-amine: synthesis and reduction with sodium. Russ Chem Bull 70, 908–915 (2021). https://doi.org/10.1007/s11172-021-3166-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3166-7

Key words

Navigation