Skip to main content

Advertisement

Log in

Effect of hydrogen bond on the mechanism of acyl chloride hydrolysis

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

On the basis of studying the reactivities of the initial and intermediate compounds in the acyl chloride—water system, methods for controlling the reaction by means of arising hydrogen bonds were found. Particular reaction steps affecting the energy profile of the reaction were elucidated. The structural and energy characteristics of the stable conformers of compounds and the energies of the ground and transition states were determined using the B3LYP/aug-cc-pVDZ method. The autocatalysis of the reaction by its products, acetic acid and hydrogen chloride, was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Non-covalent Interactions in the Synthesis and Design of New Compounds, Eds A. M. Maharramov, K. T. Mahmudov, M. N. Kopylovich, A. J. L. Pombeiro, John Wiley & Sons, New Jersey, 2016, 480 pp.; DOI: https://doi.org/10.1002/9781119113874.

    Google Scholar 

  2. Noncovalent Interactions in Catalysis, Eds K. T. Mahmudov, M. N. Kopylovich, M. F. C. G. da Silva, A. J. L. Pombeiro, Royal Society of Chemistry, Cambridge, 2019, 653 pp.; DOI: https://doi.org/10.1039/9781788016490.

    Google Scholar 

  3. Tablitsy konstant skorostei i ravnovesiya geteroliticheskikh organicheskikh reaktsii [Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions], Ed. V. A. Palm, 3(II), VINITI, Moscow, 1977, 591 pp. (in Russian).

    Google Scholar 

  4. J. Koskikallio, Suomen Kemistilehti, 1962, 35, 62.

    Google Scholar 

  5. R. J. E. Talbot, in Comprehensive Chemical Kinetics, Elsevier, New York, 1972, 10, 209; DOI: https://doi.org/10.1016/S0069-8040(08)70345-5.

    Google Scholar 

  6. M. L. Bender, M. C. Chen, J. Am. Chem. Soc., 1963, 85, 30; DOI: https://doi.org/10.1021/ja00884a006.

    Article  CAS  Google Scholar 

  7. V. A. Terentev, V. V. Varfolomeeva, Russ. J. Gen. Chem., 1996, 66, 2010.

    Google Scholar 

  8. V. A. Terentev, V. V. Varfolomeeva, Russ. J. Gen. Chem., 1996, 66, 293.

    Google Scholar 

  9. V. A. Terentev, V. V. Varfolomeeva, Russ. J. Gen. Chem., 2000, 70, 430.

    CAS  Google Scholar 

  10. A. N. Nesmeyanov, N. A. Nesmeyanov, Nachala organicheskoi khimii [Fundamentals of Oganic Chemistry], Khimiya, Moscow, 1969, 663 pp. (in Russian).

    Google Scholar 

  11. T. W. Bentley, C. S. Shim, J. Chem. Soc., Perkin Trans. 2, 1993, 9, 1659; DOI: https://doi.org/10.1039/P29930001659.

    Article  CAS  Google Scholar 

  12. K. Burke, J. Chem. Phys., 2012, 136, 150901; DOI: https://doi.org/10.1063/1.4704546.

    Article  Google Scholar 

  13. V. V. Varfolomeeva, A. V. Terentev, Phys. Chem. Chem. Phys., 2015, 17, 24282; DOI: https://doi.org/10.1039/c5cp04295.

    Article  CAS  Google Scholar 

  14. A. Srivastava, R. Mishra, S. Kumar, K. Dev, P. Tandon, R. Maurya, J. Mol. Struct., 2015, 1084, 55; DOI: https://doi.org/10.1016/j.molstruc.2014.11.070.

    Article  CAS  Google Scholar 

  15. E. Nazarparvar, M. Zahedi, E. Klein, J. Org. Chem., 2012, 77, 10093; DOI: https://doi.org/10.1021/jo301612a.

    Article  CAS  Google Scholar 

  16. B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho, M. N. Ramos, J. Mol. Model., 2009, 15, 421; DOI: https://doi.org/10.1007/s00894-008-0422-9.

    Article  CAS  Google Scholar 

  17. N. Mardirossian, M. Head-Gordon, Mol. Phys., 2017, 115, 2315; DOI: https://doi.org/10.1080/00268976.2017.1333644.

    Article  CAS  Google Scholar 

  18. Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 2012; DOI: https://doi.org/10.1021/jp045141s.

    Article  CAS  Google Scholar 

  19. J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput., 2009, 5, 808; DOI: https://doi.org/10.1021/ct800568m.

    Article  CAS  Google Scholar 

  20. CCCBDB: Computational Chemistry Comparison and Benchmark Data Base. NIST Standard Reference Database Number 101 Release 18, October 2016, Ed. R. D. Johnson III; http://cccbdb.nist.gov.

  21. A. A. Granovsky, Fire fly version 8;http://classic.chem.msu.su/gran/firefly/index.html.

  22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347; DOI: https://doi.org/10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  23. E. J. Hartwell, R. E. Richards, H. W. Thompson, J. Chem. Soc., 1948, 1436; DOI: https://doi.org/10.1039/JR9480001436.

    Google Scholar 

  24. D. Cook, J. Am. Chem. Soc., 1958, 80, 49; DOI: https://doi.org/10.1021/ja01534a014.

    Article  CAS  Google Scholar 

  25. V. A. Terentev, V. V. Varfolomeeva, Russ. J. Gen. Chem., 1994, 64, 98.

    CAS  Google Scholar 

  26. NIST Chemistry Web Book, NIST Standard Reference Database Number 69, 2018; DOI: https://doi.org/10.18434/T4D303.

  27. H. M. Randall, R. G. Fowler, N. Fuson, J. R. Dangl, Infrared Determination of Organic Structures, Van Nostrand Company, 1949, 239 pp.

  28. M. B. Smith, March’s Advanced Organic Chemistry. Reaction, Mechanisms, and Structure, Wiley, 2013, 2080 pp.

  29. E. K. Euranto, L. T. Kanerva, Acta Chem. Scand. Ser. B., 1998, 42, 717; DOI: https://doi.org/10.3891/acta.chem.scand.42b-0717.

    Google Scholar 

  30. R. T. Morrison, R. S. Boyd, Organic Chemistry, Allyn and Bacon, 1973, 1204 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Varfolomeeva.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 693–698, April, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeeva, V.V., Terentev, A.V. Effect of hydrogen bond on the mechanism of acyl chloride hydrolysis. Russ Chem Bull 70, 693–698 (2021). https://doi.org/10.1007/s11172-021-3138-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3138-y

Key words

Navigation