Skip to main content
Log in

Platinum nanocomposites with mesoporous carbon nitride: synthesis and evaluation of the hydrogenation activity

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New platinum nanocomposites were synthesized by chemical reduction of H2PtCl6•6H2O in situ with a methanol—water mixture using mesoporous carbon nitride as a stabilizing matrix and a catalyst support. The textural, morphological, and optical properties and the structural and phase composition of the composites were studied by low-temperature nitrogen adsorption—desorption, scanning electron microscopy, photoluminescence, IR, and UV spectroscopy, powder X-ray diffraction, and inductively coupled plasma atomic emission spectrometry. The introduction of metal particles did not induce significant changes in the structural integrity and, hence, in the specific physicochemical properties of mesoporous carbon nitride. The catalytic activity of the synthesized nanocomposites was evaluated in the hydrogenation of phenylacetylene, styrene, and cyclohexene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Springer Handbook of Petroleum Technology, Eds Ch. S. Hsu, P. R. Robinson, Springer International Publishing, 2017, 1238 pp.; DOI: https://doi.org/10.1007/978-3-319-49347-3_25.

  2. J. F. Guayaquil-Sosa, A. Calzada, B. Serrano, S. Escobedo, H. Lasa, Catalysts, 2017, 7, 324; DOI: https://doi.org/10.3390/catal7110324.

    Article  CAS  Google Scholar 

  3. S. Jayakumar, A. Modak, M. Guo, V. Li, X. Hu, Q. Yang, Chem. Eur. J., 2017, 23, 7791; DOI: https://doi.org/10.1002/chem.201700980.

    Article  CAS  PubMed  Google Scholar 

  4. B. A. Wilhite, M. J. McCready, A. Varma, Ind. Eng. Chem. Res., 2002, 41, 3345; DOI: https://doi.org/10.1021/ie0201112.

    Article  CAS  Google Scholar 

  5. V. V. Chesnokov, D. A. Svintsitskii, A. S. Chichkan, V. N. Parmon, Nanotechnol. in Russia, 2018, 13, 246; DOI: https://doi.org/10.1134/S199507801803004.

    Article  CAS  Google Scholar 

  6. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem., 2008, 18, 4893; DOI: https://doi.org/10.1039/B800274F.

    Article  CAS  Google Scholar 

  7. Y. Wang, X. Wang, M. Antonietti, Angew. Chem., Int. Ed., 2012, 51, 68; DOI: https://doi.org/10.1002/anie.201101182.

    Article  CAS  Google Scholar 

  8. Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem., Int. Ed., 2015, 54, 12868; DOI: https://doi.org/10.1002/anie.201501788.

    Article  CAS  Google Scholar 

  9. V. M. Akhmedov, N. E. Melnikova, I. D. Akhmedov, Russ. Chem. Bull., 2017, 66, 782; DOI: https://doi.org/10.1007/s11172-017-1810-z.

    Article  CAS  Google Scholar 

  10. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, Sh. Z. Qiao, Energy Environ. Sci., 2012, 5, 6717; DOI: https://doi.org/10.1039/C2EE03479D.

    Article  CAS  Google Scholar 

  11. Sh. Sun, Sh. Liang, Nanoscale, 2017, 9, 10544; DOI: https://doi.org/10.1039/C7NR03656F.

    Article  CAS  PubMed  Google Scholar 

  12. J. S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater., 2013, 23, 3661; DOI: https://doi.org/10.1002/adfm.201203732.

    Article  CAS  Google Scholar 

  13. D. G. Duff, P. P. Edwards, B. F. G. Johnson, J. Phys. Chem., 1995, 43, 15934; DOI: https://doi.org/10.1021/j100043a036.

    Article  Google Scholar 

  14. G. Ding, W. Wang, T. Jiang, B. Han, H. Fan, G. Yang, ChemCatChem., 2013, 5, 192; DOI: https://doi.org/10.1002/cctc.201200502.

    Article  CAS  Google Scholar 

  15. Z. Ding, X. Chen, M. Antonietti, X. Wang, ChemSusChem., 2011, 4, 274; DOI: https://doi.org/10.1002/cssc.201000149.

    CAS  PubMed  Google Scholar 

  16. Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti, J. Am. Chem. Soc., 2011, 133, 2362; DOI: https://doi.org/10.1021/ja109856y.

    Article  CAS  PubMed  Google Scholar 

  17. D. Deng, Y. Yang, G. Yutong, Y. Li, X. Xu, Y. Wang, Green Chem., 2013, 5, 192; DOI: https://doi.org/10.1039/C3GC40779A.

    Google Scholar 

  18. J. Sun, Y. Fua, G. He, X. Sun, X. Wang, Appl. Catal., B: Environmental, 2015, 165, 661; DOI: https://doi.org/10.1016/j.apcatb.2014.10.072.

    Article  CAS  Google Scholar 

  19. S. Kumar, S. Karthikeyan, A. F. Lee, Catalysts, 2018, 8, 74; DOI: https://doi.org/10.3390/catal8020074.

    Article  Google Scholar 

  20. P. Sharma, Y. Sasson, Catal. Commun., 2017, 102, 48; DOI: https://doi.org/10.1016/j.catcom.2017.08.019.

    Article  CAS  Google Scholar 

  21. X. H. Li, M. Antonietti, Chem. Soc. Rev., 2013, 42, 6593; DOI: https://doi.org/10.1039/c3cs60067j.

    Article  CAS  PubMed  Google Scholar 

  22. X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76; DOI: https://doi.org/10.1039/C5RA08871B.

    Article  CAS  PubMed  Google Scholar 

  23. Q. Yang, W. Wang, Y. Zhao, J. Zhu, Y. Zhu, L. Wang, RSC Advances, 2015, 5, 54978; DOI: https://doi.org/10.1039/C5RA08871B.

    Article  CAS  Google Scholar 

  24. Sh. Chen, Q. Yang, H. Wang, Sh. Zhang, J. Li, Y. Wang, W. Chu, Q. Ye, L. Song, Nano Lett., 2015, 15, 5961; DOI: https://doi.org/10.1021/acs.nanolett.5b02098.

    Article  CAS  PubMed  Google Scholar 

  25. C. S. Lin, M. R. Khan, S. D. Lin, J. Colloid Interface Sci., 2006, 299, 678; DOI: https://doi.org/10.1016/j.jcis.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Shao-Horn, W. C. Sheng, P. J. Ferreira, E. F. Holby, D. Morgan, Top. Catal., 2007, 3–4, 285; DOI: https://doi.org/10.1007/s11244-007-9000-0.

    Article  Google Scholar 

  27. K. S. W. Sing, D. H. Everett, L. Moscou, R. A. Pierotti, J. Rouguerol, T. Siemieniewska, Pure Appl. Chem., 1985, 4, 603; DOI: https://doi.org/10.1351/pac198557040603.

    Article  Google Scholar 

  28. L. Ge, Mater. Lett., 2011, 65, 2652; DOI: https://doi.org/10.1016/j.matlet.2011.05.069.

    Article  CAS  Google Scholar 

  29. B.-w. Sun, H.-y. Yu, Y.-j. Yang, H.-j. Li, Ch.-y. Zhai, D.-j. Qian, M. Chen, Phys. Chem. Chem. Phys., 2017, 19, 26072; DOI: https://doi.org/10.1039/C7CP05242A.

    Article  CAS  PubMed  Google Scholar 

  30. M.-L. Chen, Ch.-Y. Park, J.-G. Choi, W.-Ch. Oh, J. Korean Ceram. Soc., 2011, 48, 147; DOI: https://doi.org/10.4191/KCERS.2011.48.2.147.

    Article  CAS  Google Scholar 

  31. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Dalton Trans., 2015, 44, 1249; DOI: https://doi.org/10.1039/C4DT02940B.

    Article  CAS  PubMed  Google Scholar 

  32. P. K. Harold, E. A. Leroy, X-Ray Diffraction Procedures: for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, 1974, 992 pp.

    Google Scholar 

  33. M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc., 2013, 135, 7118; DOI: https://doi.org/10.1021/ja402521s.

    Article  CAS  PubMed  Google Scholar 

  34. J. H. Liu, T. K. Zhang, Z. C. Wang, G. Dawson, W. Chen, J. Mater. Chem., 2011, 21, 14398; DOI: https://doi.org/10.1039/C1JM12620B.

    Article  CAS  Google Scholar 

  35. G. G. Zhang, J. S. Zhang, M. W. Zhang, X. C. Wang, J. Mater. Chem., 2012, 22, 8083; DOI: https://doi.org/10.1039/C2JM00097K.

    Article  CAS  Google Scholar 

  36. M. J. Bojdys, J. O. Müller, A. Antonietti, A. Thomas, J. Chem. Eur., 2008, 14, 8177; DOI: https://doi.org/10.1002/chem.200800190.

    Article  CAS  Google Scholar 

  37. X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal., B: Environmental, 2014, 147, 82; DOI: https://doi.org/10.1016/j.apcatb.2013.08.007.

    Article  CAS  Google Scholar 

  38. G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. Photochem. Photobiol., C: Photochem. Rev., 2014, 20, 33; DOI: https://doi.org/10.1016/j.jphotochemrev.2014.04.002.

    Article  CAS  Google Scholar 

  39. J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72; DOI: https://doi.org/10.1016/j.apsusc.2016.07.030.

    Article  CAS  Google Scholar 

  40. D. Thakur, Q. T. Hoai Ta, J.-S. Noh, Molecules, 2019, 21, 3888; DOI: https://doi.org/10.3390/molecules24213888.

    Article  Google Scholar 

  41. V. Akhmedov, A. Aliyev, M. Bahmanov, V. Ahmadov, D. Tagiyev, Appl. Catal., A, General, 2018, 565, 13; DOI: https://doi.org/10.1016/j.apcata.2018.07.033.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Akhmedov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 677–684, April, 2021.

This study was financially supported by the Foundation for the Development of Science at President of the Azerbaijan Republic (Grant EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/02/4-M-47).

This paper does not contain descriptions of studies performed by the authors that involve humans or use animals as objects.

The authors declare no conflict of interest in financial or any other sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, V.M., Melnikova, N.E., Babayeva, A.Z. et al. Platinum nanocomposites with mesoporous carbon nitride: synthesis and evaluation of the hydrogenation activity. Russ Chem Bull 70, 677–684 (2021). https://doi.org/10.1007/s11172-021-3136-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3136-0

Key words

Navigation