Skip to main content

Advertisement

Log in

Energy transfer from high electronic levels of sensitizer molecules in bacterial solutions

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The population dynamics of different energy states of sensitizer molecules under intense laser irradiation was studied taking account of triplet-triplet absorption and intersystem crossing between highly excited states. It is shown which quantum states are predominantly populated under the given irradiation conditions. It was found that the efficiency of energy transfer from high electronic levels of xanthene dyes in the media containing Escherichia coli or Bacillus subtilis bacteria is very low and this bacteria inactivation channel can be ignored when describing the mechanisms of damage to pathogenic microorganisms in the presence of photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O’Neill, Rev. Antimicrob. Resist., 2015, 1.

  2. C. A. Arias, B. E. Murray, N. Engl. J. Med., 2009, 360, 439; DOI: https://doi.org/10.1056/NEJMp0804651.

    Article  CAS  Google Scholar 

  3. M. R. Hamblin, Curr. Opin. Microbiol., 2016, 33, 67; DOI: https://doi.org/10.1016/j.mib.2016.06.008.

    Article  CAS  Google Scholar 

  4. L. Huang, T. M. R. Dai, Methods Mol. Biol., 2010, 635, 155; DOI: https://doi.org/10.1007/978-1-60761-697-9_12.

    Article  CAS  Google Scholar 

  5. N. Kashef, Y. Huang, M. R. Hamblin, Nanophotonics, 2017, 6, 853; DOI: https://doi.org/10.1515/nanoph-2016-0189.

    Article  CAS  Google Scholar 

  6. M. R. Hamblin, T. Hasan, Photochem. Photobiol. Sci., 2004, 3, 436; DOI: https://doi.org/10.1039/b311900a.

    Article  CAS  Google Scholar 

  7. A. Taraszkiewicz, G. Fila, M. Grinholc, J. Nakonieczna, Int. J. Biomed. Res., 2013, 2013, 1; DOI: https://doi.org/10.1155/2013/150653.

    Article  Google Scholar 

  8. F. Vatansever, W. C. M. A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N. A. Parizott, R. Yin, G. P. Tego, M. R. Hamblin, FEMS Microbiol. Rev., 2013, 37, 955; DOI: https://doi.org/10.1111/1574-6976.12026.

    Article  CAS  Google Scholar 

  9. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, Yu. D. Lantukh, E. K. Alidzhanov, S. S. Sokabaeva, V. V. Bryukhanov, J. Photochem. & Photobiol., B: Biology, 2016, 163, 232; DOI: https://doi.org/10.1016/j.jphotobiol.2016.08.036.

    Article  CAS  Google Scholar 

  10. A. T. Ishemgulov, S. N. Letuta, S. N. Pashkevich, E. K. Alidzhanov, Yu. D. Lantukh, Optika i spektroskopiya, 2017, 123, 818; DOI: https://doi.org/10.7868/S0030403417110095 [Opt. Spectrosc. (Engl. Transl.), 2017, 123, 828; DOI: https://doi.org/10.1134/S0030400X1711008X].

    Google Scholar 

  11. S. N. Letuta, U. G. Letuta, S. N. Pashkevich, Biofizika, 2019, 64, 726; DOI: https://doi.org/10.1134/S0006302919040112 [Biophysics (Engl. Transl.), 2019, 64, 576; DOI: https://doi.org/10.1134/S0006350919040092].

    Google Scholar 

  12. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, A. N. Nikiyan, Biofizika, 2020, 65, 705; DOI: https://doi.org/10.31857/S0006302920040109 [Biophysics (Engl. Transl.), 2020, 65, 599; DOI: 10.1134/S0006350920040089].

    Google Scholar 

  13. K. K. Rohatgi-Mukherjee, A. K. Mukhopadhyay, Indian J. Pure Appl. Phys., 1976, 14, 481.

    CAS  Google Scholar 

  14. V. S. Letokhov, Nelineynye selektivnye fotoprotsessy v atomakh i molekulakh [Nonlinear Selective Photoprocesses in Atoms and Molecules], Nauka, Moscow, 1983, 408 pp. (in Russian).

    Google Scholar 

  15. B. Nickel, G. Roden, Ber. Bunsenges. Phys. Chem., 1977, 81, 281; DOI: https://doi.org/10.1002/bbpc.19770810308.

    Article  CAS  Google Scholar 

  16. S. Tobita, Y. Kaisu, H. Kobayashi, I. Tanaka, J. Chem. Phys., 1984, 81, 2962; DOI: https://doi.org/10.1063/1.448046.

    Article  CAS  Google Scholar 

  17. G. C. Orner, M. R. Topp, Chem. Phys. Lett., 1975, 36, 295; DOI: https://doi.org/10.1016/0009-2614(75)80240-5.

    Article  CAS  Google Scholar 

  18. H. B. Lin, M. R. Topp, Chem. Phys. Lett., 1977, 48, 251; DOI: https://doi.org/10.1016/0009-2614(77)80309-6.

    Article  CAS  Google Scholar 

  19. V. L. Ermolaev, V. A. Lyubimtsev, Optika i spektroskopiya, 1984, 56, 1026 [Opt. Spectrosc. (Engl. Transl.), 1984, 56].

    CAS  Google Scholar 

  20. C. Nagaoka, M. Fujita, T. Takemura, H. Baba, Chem. Phys. Lett., 1986, 123, 489; DOI: https://doi.org/10.1016/0009-2614(86)80048-3.

    Article  CAS  Google Scholar 

  21. I. S. Zaslonko, Russ. Chem. Rev., 1997, 66, 483; DOI: https://doi.org/10.1070/RC1997v066n06ABEH000222.

    Article  Google Scholar 

  22. M. V. Alfimov, V. G. Plotnikov, V. A. Smirnov, V. Y. Artyukhov, G. V. Maier, Khimiya Vysokikh Energiy, 2014, 48, 213 [High Energy Chem. (Engl. Transl.), 2014, 48, 174; DOI: https://doi.org/10.7868/S0023119714030028].

    Google Scholar 

  23. M. V. Alfimov, I. G. Batekha, V. A. Smirnov, Dokl. AN SSSR [Doklady Chem.], 1969, 185, 626 (in Russian).

    CAS  Google Scholar 

  24. V. I. Gerko, Yu. B. Shekk, I. G. Batekha, M. V. Alfimov, Optika i spektroskopiya, 1971, 30, 456 [Opt. Spectrosc. (Engl. Transl.), 1971, 30].

    CAS  Google Scholar 

  25. V. V. Rylkov, E. A. Cheshev, Optika i spektroskopiya, 1987, 63, 778 [Opt. Spectrosc. (Engl. Transl.), 1987, 63].

    CAS  Google Scholar 

  26. V. V. Rylkov, E. A. Cheshev, Optika i spektroskopiya, 1987, 63, 1030 [Opt. Spectrosc. (Engl. Transl.), 1987, 63].

    CAS  Google Scholar 

  27. S. N. Letuta, G. A. Ketsle, Y. D. Lantukh, S. N. Pashkevich, Kvantovaya elektronika, 2001, 31, 925 [Quantum Electronics, 2001, 31, 925; DOI: https://doi.org/10.1070/QE2001v031n10ABEH002077].

    Article  CAS  Google Scholar 

  28. G. A. Ketsle, L. V. Levshin, Yu. D. Lantukh, S. N. Letuta, Bull. Acad. Sci. USSR, Phys. Ser., 1990, 54.

  29. M. G. Kucherenko, G. A. Ketsle, M. P. Melnik, S. N. Letuta, Bull. Russ. Acad. Sci., Physics, 1993, 57.

  30. V. V. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, T. A. Shakhverdov, Bezyzluchatel’nyj perenos energii elektronnogo vozbuzhdeniya [Nonradiative Transfer of Electronic Excitation Energy], Nauka, Leningrad, 1977, 311 p. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Dorofeev.

Additional information

This work was carried out using the facilities at the Center for Collective Use “Institute of Micro and Nano Technologies” at the Orenburg State University. The authors express their gratitude to the staff of the Center.

This work was financially supported by the Ministry of Education and Science of the Russian Federation (Project No. FSGU-2020-0003).

This work does not involve human participants and animal subjects.

The authors declare that there is no conflict of interest.

Based on the materials of the XXXII Symposium “Modern Chemical Physics” (September 19–28, 2020, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 427–432, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeev, D.V., Letuta, S.N. & Tsyurko, D.E. Energy transfer from high electronic levels of sensitizer molecules in bacterial solutions. Russ Chem Bull 70, 427–432 (2021). https://doi.org/10.1007/s11172-021-3104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3104-8

Key words

Navigation