Abstract
New N, N′-bis(4,6-dimethylpyrimidin-2-yl)- and N, N′-bis(2,3,5,6-tetrafluorophenyl)-substituted pyromellitic diimides were synthesized. Their properties were studied in comparison with the previously synthesized N, N′-bis(4-fluorophenyl)pyromellitic diimide. Thermogravimetry, UV spectroscopy, cyclic voltammetry, and quantum chemical calculations in the framework of the density functional theory were used to characterize the synthesized compounds. The introduction of the pyrimidine cycle significantly decreases the energy of the lowest unoccupied molecular orbital. The highest occupied molecular orbitals in all compounds synthesized are deep-lying (about −7 eV).
This is a preview of subscription content, access via your institution.
References
Organic Electronic Materials and Devices, Ed. S. Ogawa, Springer, Tokyo—Heidelberg—New York—Dordrecht—London, 2016.
R. Mertens, The OLED Handbook. A Guide to OLED Technology, Industry & Market, edition 2019, Metalgras LTD, 2019.
Solution-Processable Components for Organic Electronic Devices, Eds J. Ulanski, B. Luszczynska, K. Matyjaszewski, Wiley-VCH, Weinheim, 2019.
M. C. Petty, Organic and Molecular Electronics: from Principles to Practice, 2nd ed., Wiley-VCH, Weinheim, 2019.
Handbook of Organic Materials for Electronic and Photonic Devices, 2nd ed., Ed. O. Ostroverkova, Woodhead Publ., Cambridge, 2018.
E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128.
J. Langford, A. Insuasty, S. Carrera, L. Tang, C. Forsyth, C. Hogan, C. McNei, ChemPlusChem, 2019, 84, 1638.
C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev., 2012, 112, 2208.
M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor, S. V. Bhosale, Chem. Rev., 2016, 116, 11685.
A. Nowak-Król, K. Shoyama, M. Stolte, F. Würthner, Chem. Commun., 2018, 54, 13763.
Organic Electronics II: More Materials and Applications, Vol. 2, Ed. H. Klauk, Wiley-VCH, Weinheim, 2012.
A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature, 2012, 488, 485.
S. Kola, J. H. Kim, R. Ireland, M.-L. Yeh, K. Smith, W. Guo, H. E. Katz, ACS Macro Lett., 2013, 2, 664.
Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc., 2008, 130, 14410.
S. Kola, N. J. Tremblay, M.-L. Yeh, H. E. Katz, S. B. Kirschner, D. H. Reich, ACS Macro Lett., 2012, 1, 136.
T.-F. Yang, S.-H. Huang, Y.-P. Chiu, B.-H. Chen, Y.-W. Shih, Y.-C. Chang, J.-Y. Yao, Y.-J. Lee, M.-Y. Kuo, Chem. Commun., 2015, 51, 1377.
M.-L. Yeh, S.-Y. Wang, J. F. M. Hardigree, V. Podzorov, H. E. Katz, J. Mater. Chem. C, 2015, 3, 3029.
Z. Liu, G. Zhang, Z. Cai, X. Chen, H. Luo, Y. Li, J. Wang, D. Zhang, Adv. Mater., 2014, 26, 6965.
S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev., 2008, 37, 331.
Z. Li, Q. Yang, R. Chang, G. Ma, M. Chen, W. Zhang, Dyes Pigm., 2011, 88, 307.
H. Cao, V. Chang, R. Hernandez, M. D. Heagy, J. Org. Chem., 2005, 70, 4929.
S. S. Gunathilake, P. Huang, M. P. Bhatt, E. A. Rainbolt, M. C. Stefan, M. C. Biewer, RSC Adv., 2014, 4, 41997.
S.-L. Suraru, F. Würthner, Angew. Chem., Int. Ed., 2014, 53, 7428.
S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev., 2008, 37, 331.
H. Langhals, Heterocycles, 1995, 40, 477.
E. A. Komissarova, A. N. Vasyanin, V. E. Zhulanov, I. V. Lunegov, E. V. Shklyaeva, G. G. Abashev, Russ. Chem. Bull., 2019, 68, 1702.
W. A. Mosher, S. J. Chlystek, J. Heterocycl. Chem., 1972, 9, 319.
Y. Peng, L. Cao, Zh. Li, Appl. Surf. Sci., 2017, 420, 355.
T. F. Scholz, N. J. Somerville, G. M. Smith, US Pat. 2660579, Chem. Abstrs, 1954, 48, 12184.
H. Nakayama, J. Nishida, N. Takada, H. Sato, Y. Yamashita, Chem. Mater., 2012, 24, 671.
Y.-J. Huang, W.-C. Lo, S.-W. Liu, C.-H. Cheng, C.-T. Chen, J.-K. Wang, Sol. Energy Mater Sol. Cells, 2013, 116, 153.
H. Meng, J. Zheng, A. J. Lovinger, B.-C. Wang, P. G. Van Patten, Z. Bao, Chem. Mater., 2003, 15, 1778.
E. V. Verbitskiy, E. M. Cheprakova, J. O. Subbotina, A. V. Schepochkin, P. A. Slepukhin, G. L. Rusinov, V. N. Charushin, O. N. Chupakhin, N. I. Makarova, A. V. Metelitsa, V. I. Minkin, Dyes Pigm., 2014, 100, 201.
Author information
Authors and Affiliations
Corresponding authors
Additional information
This study was financially supported by the Russian Foundation for Basic Research (Project No. 18-33-00323mol_a).
Russian Chemical Bulletin, International Edition, Vol. 69, No. 10, pp. 1944–1948, October, 2020
Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1944–1948, October, 2020.
Rights and permissions
About this article
Cite this article
Komissarova, E.A., Zhulanov, V.E., Mokrushin, I.G. et al. Synthesis and study of N,N′-disubstituted derivatives of pyromellitic diimide. Russ Chem Bull 69, 1944–1948 (2020). https://doi.org/10.1007/s11172-020-2983-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11172-020-2983-4
Key words
- pyromellitic diimide
- pyrimidine
- fluoroaniline
- tetrafluoroaniline
- highest occupied molecular orbital
- lowest unoccupied molecular orbital
- forbidden gap width
- quantum chemical calculations