Skip to main content

Synthesis and study of N,N′-disubstituted derivatives of pyromellitic diimide

Abstract

New N, N′-bis(4,6-dimethylpyrimidin-2-yl)- and N, N′-bis(2,3,5,6-tetrafluorophenyl)-substituted pyromellitic diimides were synthesized. Their properties were studied in comparison with the previously synthesized N, N′-bis(4-fluorophenyl)pyromellitic diimide. Thermogravimetry, UV spectroscopy, cyclic voltammetry, and quantum chemical calculations in the framework of the density functional theory were used to characterize the synthesized compounds. The introduction of the pyrimidine cycle significantly decreases the energy of the lowest unoccupied molecular orbital. The highest occupied molecular orbitals in all compounds synthesized are deep-lying (about −7 eV).

This is a preview of subscription content, access via your institution.

References

  1. Organic Electronic Materials and Devices, Ed. S. Ogawa, Springer, Tokyo—Heidelberg—New York—Dordrecht—London, 2016.

    Google Scholar 

  2. R. Mertens, The OLED Handbook. A Guide to OLED Technology, Industry & Market, edition 2019, Metalgras LTD, 2019.

  3. Solution-Processable Components for Organic Electronic Devices, Eds J. Ulanski, B. Luszczynska, K. Matyjaszewski, Wiley-VCH, Weinheim, 2019.

    Google Scholar 

  4. M. C. Petty, Organic and Molecular Electronics: from Principles to Practice, 2nd ed., Wiley-VCH, Weinheim, 2019.

    Google Scholar 

  5. Handbook of Organic Materials for Electronic and Photonic Devices, 2nd ed., Ed. O. Ostroverkova, Woodhead Publ., Cambridge, 2018.

    Google Scholar 

  6. E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128.

    CAS  Google Scholar 

  7. J. Langford, A. Insuasty, S. Carrera, L. Tang, C. Forsyth, C. Hogan, C. McNei, ChemPlusChem, 2019, 84, 1638.

    Google Scholar 

  8. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev., 2012, 112, 2208.

    CAS  Google Scholar 

  9. M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor, S. V. Bhosale, Chem. Rev., 2016, 116, 11685.

    Google Scholar 

  10. A. Nowak-Król, K. Shoyama, M. Stolte, F. Würthner, Chem. Commun., 2018, 54, 13763.

    Google Scholar 

  11. Organic Electronics II: More Materials and Applications, Vol. 2, Ed. H. Klauk, Wiley-VCH, Weinheim, 2012.

    Google Scholar 

  12. A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature, 2012, 488, 485.

    CAS  Google Scholar 

  13. S. Kola, J. H. Kim, R. Ireland, M.-L. Yeh, K. Smith, W. Guo, H. E. Katz, ACS Macro Lett., 2013, 2, 664.

    CAS  Google Scholar 

  14. Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc., 2008, 130, 14410.

    CAS  Google Scholar 

  15. S. Kola, N. J. Tremblay, M.-L. Yeh, H. E. Katz, S. B. Kirschner, D. H. Reich, ACS Macro Lett., 2012, 1, 136.

    CAS  Google Scholar 

  16. T.-F. Yang, S.-H. Huang, Y.-P. Chiu, B.-H. Chen, Y.-W. Shih, Y.-C. Chang, J.-Y. Yao, Y.-J. Lee, M.-Y. Kuo, Chem. Commun., 2015, 51, 1377.

    Google Scholar 

  17. M.-L. Yeh, S.-Y. Wang, J. F. M. Hardigree, V. Podzorov, H. E. Katz, J. Mater. Chem. C, 2015, 3, 3029.

    CAS  Google Scholar 

  18. Z. Liu, G. Zhang, Z. Cai, X. Chen, H. Luo, Y. Li, J. Wang, D. Zhang, Adv. Mater., 2014, 26, 6965.

    CAS  Google Scholar 

  19. S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev., 2008, 37, 331.

    CAS  Google Scholar 

  20. Z. Li, Q. Yang, R. Chang, G. Ma, M. Chen, W. Zhang, Dyes Pigm., 2011, 88, 307.

    CAS  Google Scholar 

  21. H. Cao, V. Chang, R. Hernandez, M. D. Heagy, J. Org. Chem., 2005, 70, 4929.

    CAS  Google Scholar 

  22. S. S. Gunathilake, P. Huang, M. P. Bhatt, E. A. Rainbolt, M. C. Stefan, M. C. Biewer, RSC Adv., 2014, 4, 41997.

    CAS  Google Scholar 

  23. S.-L. Suraru, F. Würthner, Angew. Chem., Int. Ed., 2014, 53, 7428.

    CAS  Google Scholar 

  24. S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev., 2008, 37, 331.

    CAS  Google Scholar 

  25. H. Langhals, Heterocycles, 1995, 40, 477.

    CAS  Google Scholar 

  26. E. A. Komissarova, A. N. Vasyanin, V. E. Zhulanov, I. V. Lunegov, E. V. Shklyaeva, G. G. Abashev, Russ. Chem. Bull., 2019, 68, 1702.

    CAS  Google Scholar 

  27. W. A. Mosher, S. J. Chlystek, J. Heterocycl. Chem., 1972, 9, 319.

    CAS  Google Scholar 

  28. Y. Peng, L. Cao, Zh. Li, Appl. Surf. Sci., 2017, 420, 355.

    CAS  Google Scholar 

  29. T. F. Scholz, N. J. Somerville, G. M. Smith, US Pat. 2660579, Chem. Abstrs, 1954, 48, 12184.

  30. H. Nakayama, J. Nishida, N. Takada, H. Sato, Y. Yamashita, Chem. Mater., 2012, 24, 671.

    CAS  Google Scholar 

  31. Y.-J. Huang, W.-C. Lo, S.-W. Liu, C.-H. Cheng, C.-T. Chen, J.-K. Wang, Sol. Energy Mater Sol. Cells, 2013, 116, 153.

    CAS  Google Scholar 

  32. H. Meng, J. Zheng, A. J. Lovinger, B.-C. Wang, P. G. Van Patten, Z. Bao, Chem. Mater., 2003, 15, 1778.

    CAS  Google Scholar 

  33. E. V. Verbitskiy, E. M. Cheprakova, J. O. Subbotina, A. V. Schepochkin, P. A. Slepukhin, G. L. Rusinov, V. N. Charushin, O. N. Chupakhin, N. I. Makarova, A. V. Metelitsa, V. I. Minkin, Dyes Pigm., 2014, 100, 201.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Komissarova or G. G. Abashev.

Additional information

This study was financially supported by the Russian Foundation for Basic Research (Project No. 18-33-00323mol_a).

Russian Chemical Bulletin, International Edition, Vol. 69, No. 10, pp. 1944–1948, October, 2020

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1944–1948, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komissarova, E.A., Zhulanov, V.E., Mokrushin, I.G. et al. Synthesis and study of N,N′-disubstituted derivatives of pyromellitic diimide. Russ Chem Bull 69, 1944–1948 (2020). https://doi.org/10.1007/s11172-020-2983-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2983-4

Key words

  • pyromellitic diimide
  • pyrimidine
  • fluoroaniline
  • tetrafluoroaniline
  • highest occupied molecular orbital
  • lowest unoccupied molecular orbital
  • forbidden gap width
  • quantum chemical calculations