Skip to main content
Log in

Mixed-ligand nickel(ii) and copper(ii) complexes in competitive chelation reactions with polyaminopolyacetate and polyamine ligands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The mixed-ligand and competitive formation of coordination compounds in aqueous solutions of ternary systems containing nickel(ii) or copper(ii) cations, polyaminopolyacetate (nitrilo triacetic, ethylenediaminetetraacetic, or diethylenetriaminepentaacetic acid), and polyamine (ethylenediamine, diethylenetriamine, or triethylenetetramine) ligands was studied by spectrophotometry. The factors were determined which facilitate the formation of mixed-ligand complexes of composition [ML1L2] (M is NiII or CuII, L1 is a polyaminopolyacetate chelating agent, L2 is a polyamine ligand) in aqueous solutions. In these complexes, amines act predominantly as polydentate chelating ligands and the coordination sphere of metal atoms is completed by nitrogen and oxygen atoms of the chelating agents. An increase in the denticity of the polyamine ligand was found to increase the number of ethylenediamine metallocycles and promote partial cleavage of glycinate rings of carboxylate ligands in the coordination polyhedron of the chelate, thereby providing an increase in the stability of the resulting mixed-ligand complex species. In systems containing copper(ii) cations, the ability of polyamine ligands to exhibit a discriminatory effect and block the coordination of the polyaminopolyacetate chelating ligand was shown to vary and depend on the combination of L1 and L2 ligands in the coordination sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pyreu, T. Molkova, S. Ryzkova, M. Bazanova, S. Gridchin, J. Therm. Anal. Calorim., 2016, 124, 1003; DOI: https://doi.org/10.1007/s10973-015-5212-x.

    Article  CAS  Google Scholar 

  2. P. Kumar, P. P. Singh, V. K. Nigam, S. Singh, R. K. P. Singh, Russ. J. Coord. Chem., 2010, 36, 627; DOI: https://doi.org/10.1134/S1070328410080130.

    Article  CAS  Google Scholar 

  3. M. R. Mehlenbacher, F. Bou-Abdallah, X. Xin Liu, A. Melman, Inorg. Chim. Acta, 2015, 437, 152; DOI: https://doi.org/10.1016/j.ica.2015.08.009.

    Article  CAS  Google Scholar 

  4. R. P. Phase, A. G. Shankarwar, S. G. Shankarwar, T. K. Chondhekar, Der Pharmacia Sinica, 2013, 4, 54.

    CAS  Google Scholar 

  5. V. I. Kornev, N. S. Buldakova, Russ. J. Inorg. Chem., 2015, 60, 398; DOI: https://doi.org/10.7868/S0044457X15030101.

    Article  CAS  Google Scholar 

  6. V. I. Kornev, N. S. Buldakova, M. V. Didik, Russ. J. Inorg. Chem., 2014, 59, 626; DOI: https://doi.org/10.7868/S0044457X14060117.

    Article  CAS  Google Scholar 

  7. B. Kurzak, K. Bogusz, D. Kroczewska, J. Jezierska, Polyhedron, 2001, 20, 2627; DOI: https://doi.org/10.1016/S0277-5387(01)00860-9.

    Article  CAS  Google Scholar 

  8. Md. Sher Ali, Md. Kudrat-E-Zahan, Md. Masuqul Haque, Md. Abdul Alim, Md. Mofasserul Alam, J. Ara Shompa, M. S. Islam, Int. J. Materials Sci. Appl., 2015, 4, 225; DOI: https://doi.org/10.11648/j.ijmsa.20150404.11.

    CAS  Google Scholar 

  9. M. M. H. Khalil, E. H. Ismail, S. Abdel-Azim, E. R. Souaya, J. Therm. Anal. Calorim., 2010, 101, 129; DOI: https://doi.org/10.1007/s10973-010-0740-x.

    Article  CAS  Google Scholar 

  10. S. Verma, S. Dharmveer, V. Krishna, J. Res. Chem. Environ, 2016, 6, 1.

    Google Scholar 

  11. G. M. H. Ben Hander, Res. J. Chem. Sci., 2012, 2(3), 12.

    CAS  Google Scholar 

  12. P. P. Singh, S. Kanaujia, Chem. Sci. Trans., 2013, 2, 1028; DOI: https://doi.org/10.7598/cst2013.416.

    Article  CAS  Google Scholar 

  13. R. N. Patel, N. Singh, K. K. Shukla, J. Niclós-Gutiérrez, A. Castineiras, V. G. Vaidyanathan, B. U. Nair, Spectrochim. Acta, Part A, 2005, 62, 261; DOI: https://doi.org/10.1016/j.saa.2004.12.034.

    Article  CAS  Google Scholar 

  14. R. N. Patel, N. Singh, K. K. Shukla, U. K. Chauhan, S. Chakraborty, J. Niclos-Gutierrez, A. Castineiras, J. Inorg. Biochem., 2004, 98, 231; DOI: https://doi.org/10.1016/j.jinorgbio.2003.10.003.

    Article  Google Scholar 

  15. K. O. Lilly, VISTAS, 2014, 3, 138.

    Google Scholar 

  16. F. A. Saleemh, S. Musameh, A. Sawafta, P. Brandao, C. J. Tavares, S. Ferdov, A. Barakat, A. Al Ali, M. Al-Noaimi, I. Warad, Arabian J. Chem., 2017, 10, 845; DOI: https://doi.org/10.1016/j.arabjc.2016.10.008.

    Article  CAS  Google Scholar 

  17. M. Ganeshpandian, S. Ramakrishnan, M. Palaniandavar, E. Suresh, A. Riyasdeen, M. A. Akbarsha, J. Inorg. Biochem., 2014, 140, 202; DOI: https://doi.org/10.1016/j.jinorgbio.2014.07.021.

    Article  CAS  Google Scholar 

  18. S. Salon Mary, J. Dharmaraja, S. Arvind Narayan, S. Shobana, Asian J. Chem., 2014, 26, 7133; DOI: https://doi.org/10.14233/ajchem.2014.16524.

    Article  Google Scholar 

  19. Y. N. Shi, K. Zheng, L. Zhu, Y. T. Li, J. Biochem. Mol. Toxicol., 2015, 29, 221; DOI: https://doi.org/10.1002/jbt.21688.

    Article  CAS  Google Scholar 

  20. M. Jahangir Alam, M. R. Ullah, M. Akther, JUSPS-B, 2018, 30, 12; DOI: https://doi.org/10.22147/jusps-B/300202.

    Article  Google Scholar 

  21. E. V. Kozlovskiĭ, T. B. Khochenkova, Russ. J. Inorg. Chem., 2004, 49, 793.

    Google Scholar 

  22. D. F. Pyreu, E. V. Khrenova, E. V. Kozlovskii, Russ. J. Coord. Chem., 2008, 34, 750; DOI: https://doi.org/10.1134/S1070328408100072.

    Article  CAS  Google Scholar 

  23. E. V. Kozlovskii, D. F. Pyreu, T. B. Khochenkova, Russ. J. Inorg. Chem., 2008, 53, 1158; DOI: https://doi.org/10.1134/S0036023608070309.

    Article  Google Scholar 

  24. D. F. Pyreu, E. V. Kozlovskii, J. Therm. Anal. Calorim., 2010, 100, 355; DOI: https://doi.org/10.1007/s10973-009-0144-y.

    Article  CAS  Google Scholar 

  25. F. J. C. Rossotti, H. Rossotti, The Determination of Stability Constants and Other Equilibrium Constants in Solution, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1961, 425 pp.

    Google Scholar 

  26. M. T. Beck, Chemistry of Complex Equilibria, Van Nostrand Reinhold Co., London, 1970, 285 pp.

    Google Scholar 

  27. H. Irving, R. J. P. Williams, J. Chem. Soc., 1953, 156, 3192; DOI: https://doi.org/10.1039/JR9530003192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Popova.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1771–1777, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheglova, N.V., Popova, T.V. Mixed-ligand nickel(ii) and copper(ii) complexes in competitive chelation reactions with polyaminopolyacetate and polyamine ligands. Russ Chem Bull 69, 1771–1777 (2020). https://doi.org/10.1007/s11172-020-2961-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2961-x

Key words

Navigation