Skip to main content
Log in

Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Gadolinium orthoferrite GdFeO3 nanoparticles were synthesized by co-precipitation of gadolinium and iron(m) hydroxides in a free impinging-jets microreactor followed by thermal treatment of co-precipitation products. According to X-ray diffraction, the co-precipitated hydroxides were X-ray amorphous, and the content of key elements within their composition corresponded to the stoichiometry of GdFeO3. Powder X-ray diffraction of the product of thermal treatment of hydroxides at 750 °C for 4 h indicated on the formation of GdFeO3 nanocrystals with a perovskite-like orthorhombic structure and an average crystallite size of 27±3 nm. Scanning electron microscopy showed that the gadolinium orthoferrite nanocrystals had an isometric morphology, and their specific surface area was determined by the Brunauer—Emmett—Teller method to be 13.55 m2g−1. Mössbauer spectroscopy and vibrational magnetometry showed that the obtained GdFeO3 nanoparticles were superparamagnetic and were characterized by a bimodal distribution of the effective field, indicating on their core—shell-type composite structure. The study of the composition, structure, morphology, and magnetic behavior of the obtained gadolinium orthoferrite nanoparticles showed that they can be used as a basis for contrast agents for magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. C. Pinho, J. S. Amaral, A. Wattiaux, M. Duttine, M.-H. Delville, C. F. G. C. Geraldes, Eur. J. Inorg. Chem., 2018, 2018, 3570.

    Article  CAS  Google Scholar 

  2. F. Söderlind, M. A. Fortin, R. M. Petoral, Jr, A. Klasson, T. Veres, M. Engström, K. Uvdal, P.-O. Käll, Nanotechnology, 2008, 19, 085608.

    Article  Google Scholar 

  3. T. Athar, S. K. Vishwakarma, A. Bardia, A. A. Khan, Biomed. Phys. Eng. Express, 2016, 2, 025010.

    Article  Google Scholar 

  4. S. Deka, V. Saxena, A. Hasan, P. Chandra, L. M. Pandey, Mater. Sci. Eng. C, 2018, 92, 932.

    Article  CAS  Google Scholar 

  5. V. I. Popkov, E. A. Tugova, A. K. Bachina, O. V. Almjasheva, Russ. J. Gen. Chem., 2017, 87, 2516.

    Article  CAS  Google Scholar 

  6. E. A. Tugova, I. A. Zvereva, Nanosyst. Phys. Chem. Math., 2013, 4, 851.

    Google Scholar 

  7. M. M. Gimaztdinova, E. A. Tugova, M. V. Tomkovich, V. I. Popkov, Condens. Matter Interfaces, 2016, 18, 422.

    CAS  Google Scholar 

  8. L. Li, X. Wang, Y. Lan, W. Gu, S. Zhang, Ind. Eng. Chem. Res., 2013, 52, 9130.

    Article  CAS  Google Scholar 

  9. P. Tang, Y. Hu, T. Lin, Z. Jiang, C. Tang, Integr. Ferroelectr., 2014, 153, 73.

    Article  CAS  Google Scholar 

  10. D. V. R. Kumar, B. L. V. Prasad, A. A. Kulkarni, Ind. Eng. Chem. Res., 2013, 52, 17376.

    Article  CAS  Google Scholar 

  11. R. S. Abiev, O. V. Almjasheva, S. G. Izotova, V. V. Gusarov, J. Chem. Technol. Appl., 2017, 1, 7.

    Google Scholar 

  12. O. V. Proskurina, I. V. Nogovitsin, T. S. Il’ina, D. P. Danilovich, R. S. Abiev, V. V. Gusarov, Russ. J. Gen. Chem., 2018, 88, 2139.

    Article  CAS  Google Scholar 

  13. O. V. Proskurina, E. V. Sivtsov, M. O. Enikeeva, A. A. Sirotkin, R. S. Abiev, V. V. Gusarov, Nanosyst. Phys. Chem. Math., 2019, 10, 206.

    Article  CAS  Google Scholar 

  14. O. V. Proskurina, R. S. Abiev, D. P. Danilovich, V. V. Panchuk, V. G. Semenov, V. N. Nevedomsky, V. V. Gusarov, Chem. Eng. Process. Process Intensif., 2019, 143, 107598.

    Article  CAS  Google Scholar 

  15. Process Intensification for Sustainable Energy Conversion, Eds F. Gallucci, M. V. S. Annaland, Wiley, 2015, 408 pp.

  16. H. Z. Baumert, Phys. Scr., 2013, T155, 014001.

    Article  Google Scholar 

  17. O. V. Proskurina, M. V. Tomkovich, A. K. Bachina, V. V. Sokolov, D. P. Danilovich, V. V. Panchuk, V. G. Semenov, V. V. Gusarov, Russ. J. Gen. Chem., 2017, 87, 2507.

    Article  CAS  Google Scholar 

  18. S. Mathur, H. Shen, N. Lecerf, A. Kjekshus, H. Fjellvåg, G. F. Goya, Adv. Mater., 2002, 14, 1405.

    Article  CAS  Google Scholar 

  19. V. I. Popkov, O. V. Almjasheva, M. P. Schmidt, V. V. Gusarov, Russ. J. Gen. Chem., 2015, 85, 1370.

    Article  CAS  Google Scholar 

  20. Y. Albadi, K. D. Martinson, A. V. Shvidchenko, I. V. Bulyanenko, V. G. Semenov, V. I. Popkov, Nanosyst. Phys. Chem. Math., 2020, 11, 252.

    Article  Google Scholar 

  21. V. I. Popkov, O. V. Almjasheva, V. N. Nevedomskii, V. V. Panchuk, V. G. Semenov, V. V. Gusarov, Ceram. Int., 2018, 44, 20906.

    Article  CAS  Google Scholar 

  22. V. I. Popkov, V. P. Tolstoy, V. G. Semenov, J. Alloys Compd., 2020, 813, 152179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Albadi.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1290–1295, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albadi, Y., Sirotkin, A.A., Semenov, V.G. et al. Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor. Russ Chem Bull 69, 1290–1295 (2020). https://doi.org/10.1007/s11172-020-2900-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2900-x

Key words

Navigation