Skip to main content
Log in

Physicochemical approaches for optimization of perovskite solar cell performance

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Perovskite solar cells (PSCs) with photovoltaic parameters improved using a number of physicochemical approaches for optimization of structure and properties of their components were fabricated and studied under both standard illumination conditions AM1.5G and reduced illumination intensity. Photoelectrodes based on mesoscopic TiO2 layers with different content of anatase and rutile particles were constructed, as well as the perovskite material and the TiO2—perovskite interface were modified. As a result, the optimized PSCs had increased stability in a humid atmosphere and showed high efficiencies (10–14%) in a wide range of illumination intensities of 10–1000 W m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Snaith, J. Phys. Chem. Lett., 2013, 4, 3623.

    Article  CAS  Google Scholar 

  2. Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, J. Photon. Energ., 2016, 6, 022001.

    Article  Google Scholar 

  3. M. I. H. Ansaria, A. Qurashib, M. K. Nazeeruddin, J. Photochem. Photobiol. C: Photochem. Rev., 2018, 35, 1.

    Article  Google Scholar 

  4. J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, V. Bulović, Energ. Environ. Sci., 2015, 8, 1200.

    Article  CAS  Google Scholar 

  5. R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater., 2019, 29, 1808843.

    Article  CAS  Google Scholar 

  6. D. Wang, M. Wright, N. K. Elumalai, A. Uddin, Sol. Energ. Mater. Sol. Cell., 2016, 147, 255.

    Article  CAS  Google Scholar 

  7. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A, 2015, 3, 8970.

    Article  CAS  Google Scholar 

  8. Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, M. J. Heben, Adv. Energy. Mater., 2016, 6, 1600846.

    Article  Google Scholar 

  9. T. A. Berhe, W. Su, C. Chen, C. Pan, J. Cheng, H. Chen, M. Tsai, L. Chen, A. A. Dubale, B. Hwang, Energ. Environ. Sci., 2016, 9, 323.

    Article  CAS  Google Scholar 

  10. J. Prakash, A. Singh, G. Sathiyan, R. Ranjan, A. Singh, A. Garg, R. K. Gupta, Mater. Today Energ., 2018, 9, 440.

    Article  Google Scholar 

  11. K. Wang, W. S. Subhani, Y. Wang, X. Zuo, H. Wang, L. Duan, S. Liu, Adv. Mater., 2019, 31, 1902037.

    Article  CAS  Google Scholar 

  12. J. Chang, Z. Lin, H. Zhu, F. H. Isikgor, Q. H. Xu, C. Zhang, H. Yue, J. Ouyang, J. Mater. Chem. A, 2016, 4, 16546.

    Article  CAS  Google Scholar 

  13. I. Raifuku, Y. Ishikawa, S. Ito, Y. Uraoka, J. Phys. Chem. C, 2016, 120, 18986.

    Article  CAS  Google Scholar 

  14. V. Stockhausen, L. Andrade, D. Ivanou, B. Stannowski, A. Mendes, Sol. Energ. Mater. Sol. Cell., 2019, 191, 451.

    Article  CAS  Google Scholar 

  15. A. B. Nikolskaia, S. S. Kozlov, M. F. Vildanova, O. I. Shevaleevskiy, Semiconductors, 2019, 53, 550.

    Article  Google Scholar 

  16. V. Stoichkov, N. Bristow, J. Troughton, F. De Rossi, T. M. Watson, J. Kettle, Sol. Energ., 2018, 170, 549.

    Article  CAS  Google Scholar 

  17. E. Velilla, D. Ramirez, J. I. Uribe, J. F. Montoya, F. Jaramillo, Sol. Energ. Mater. Sol. Cell., 2019, 191, 15.

    Article  CAS  Google Scholar 

  18. N. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energ., 2016, 1, 16152.

    Article  CAS  Google Scholar 

  19. J. Kim, A. Ho-Baillie, S. Huang, Sol. RRL, 2019, 3, 1800302.

    Article  Google Scholar 

  20. A. N. Cho, N. G. Park, ChemSusChem, 2017, 10, 3687.

    Article  CAS  Google Scholar 

  21. T. M. Serikov, N. K. Ibrayev, N. Nuraje, S. V. Savilov, V. V. Lunin, Russ. Chem. Bull., 2017, 66, 614.

    Article  CAS  Google Scholar 

  22. O. I. Shevaleevskiy, A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. V. Alexeeva, A. A. Vishnev, L. L. Larina, Russ. J. Phys. Chem. B, 2018, 12, 663.

    Article  CAS  Google Scholar 

  23. M. Vildanova, S. Kozlov, A. Nikolskaia, O. Shevaleevskiy, N. Tsvetkov, O. Alexeeva, L. Larina, Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, 540.

    CAS  Google Scholar 

  24. M. F. Vildanova, A. B. Nikolskaia, S. S. Kozlov, O. I. Shevaleevskiy, L. L. Larina, Tech. Phys. Lett., 2018, 44, 126.

    Article  CAS  Google Scholar 

  25. A. Luque, S. Hegedu, in Handbook of Photovoltaic Science and Engineering, Eds A. Luque, S. Hegedu, John Wiley & Sons Ltd., Chichester, 2003, p. 92.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Nikolskaia.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1245–1252, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolskaia, A.B., Vildanova, M.F., Kozlov, S.S. et al. Physicochemical approaches for optimization of perovskite solar cell performance. Russ Chem Bull 69, 1245–1252 (2020). https://doi.org/10.1007/s11172-020-2894-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2894-4

Key words

Navigation