Skip to main content
Log in

Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New high-molecular-weight contrast agents based on polyamidoamine (PAMAM) dendrimers for targeted imaging of malignant tumors characterized by overexpression of human epidermal growth factor receptor (EGFR) and human alpha-fetoprotein receptor (RECAF) were designed. Conjugates of second (G2) and third (G3) generation polyamidoamine dendrimers with 1,4,7,10-tetraazocyclodecane-1,4,7,10-tetraacetic acid (DOTA) were obtained. The quantitative composition of the conjugates was determined by 1HNMR spectroscopy. It was shown that four out of the 16 terminal NH2 groups in G2-DOTA and nine out of the 32 groups in G3-DOTA were modified with DOTA. The morphology, size, and charge of the synthesized macromolecules were characterized by dynamic light scattering and electrophoresis. Gadolinium(III) was loaded into the conjugates and the Gd content was determined by atomic emission spectroscopy. For increasing the selectivity of accumulation in the tumor cells, two recombinant proteins able to bind selectively to EGFR and RECAF, namely, human recombinant epidermal growth factor (rEGF) and human recombinant 3rd domain of alpha-fetoprotein (3dAFPpG), were conjugated with G2 and G3 dendrimers. The conjugates containing vector molecules were mainly accumulated via clathrin-dependent endocytosis, whereas G2-DOTA and G3-DOTA were absorbed via caveolin-dependent endocytosis and macropinocytosis. The dendrimer conjugates with vector molecules were intensely accumulated in A549 cells characterized by high expression of EGFR (Herl) and RECAF, whereas the accumulation of conjugates in the control K562 cells (with low expression of Her1) and in the CD14 population of human unstimulated mononuclear white blood cells was insignificant. The 3dAFPpG-conjugated dendrimers were partly recycled. All synthesized conjugates had a rather low toxicity in the range of 350–450 µmol L−1 (IC50).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Neves, K. M. Brindle, Biochim. Biophys. Acta, 2006, 1766, 242.

    CAS  PubMed  Google Scholar 

  2. L. Shi, S. Tashiro, J. Radiat. Res., 2018, 59, 121.

    Google Scholar 

  3. K. M. Brindle, Br. J. Radiol., 2003, 76, 111.

    Google Scholar 

  4. M. Rogosnitzky, S. Branch, Biometals, 2016, 29, 365.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. P. P. Gladyshev, Yu. V. Tumanov, S. A. Ibragimova, V. V. Kuznetsov, E. D. Gribova, Russ. Chem. Bull., 2018, 67, 600.

    CAS  Google Scholar 

  6. S. Aime, P. Caravan, J. Magn. Reson. Imaging, 2009, 30, 1259.

    PubMed  PubMed Central  Google Scholar 

  7. M. F. Tweedle, S. M. Eaton, W. C. Eckelman, Invest. Radiol., 1988, 23, 236.

    Google Scholar 

  8. S. Wang, M. Brechbiel, E. Wiener, Invest. Radiol., 2003, 38, 662.

    CAS  PubMed  Google Scholar 

  9. E. Wiener, M. W. Brechbiel, H. Brothers, Magn. Reson. Med., 1994, 31, 1.

    CAS  PubMed  Google Scholar 

  10. D. A. Tomalia, L. A. Reyna, S. Svenson, Biochem. Soc. Trans., 2007, 35, 61.

    CAS  PubMed  Google Scholar 

  11. H. Bryant, M. Brechbiel, C. Wu, J. Magn. Reson. Imaging, 1999, 9, 348.

    PubMed  Google Scholar 

  12. J. Aaron, L. Villaraza, A. Bumb, Chem. Rev., 2010, 110, 2921.

    Google Scholar 

  13. D. Pan, S. Caruthers, J. Chen, Future Med. Chem., 2010, 2, 471.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. O. V. Maslova, O. V. Senko, E. N. Efremenko, Russ. Chem. Bull., 2018, 67, 614.

    CAS  Google Scholar 

  15. A. F. Mironov, K. A. Zhdanova, N. A. Bragina, Russ. Chem. Rev., 2018, 87, 859.

    CAS  Google Scholar 

  16. E. Abbasi, A. Fekri, A. Akbarzadeh, Nanoscale Res. Lett., 2014, 9, 247.

    PubMed  PubMed Central  Google Scholar 

  17. M. T. McMahon, J. W. Bulte, Nanomed Nanobiotechnol., 2018, 10, 1496.

    Google Scholar 

  18. A. Merbach, L. Helm, É. Tóth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Wiley, 2013, 512 p.

  19. K. Prabal, C. Tahir, W. Guofeng, W. Goddard, Macromolecules, 2004, 37, 6236.

    Google Scholar 

  20. N. Sato, H. Kobayashi, A. Hiraga, T. Saga, K. Togashi, Magn. Reson. Med., 2001, 46, 1169.

    CAS  PubMed  Google Scholar 

  21. E. Toth, D. Pubanz, S. Vauthey, L. Helm, E. Merbach, Chem.: Eur. J., 1996, 2, 1607.

    CAS  Google Scholar 

  22. M. Bonello, A. H. Sims, S. P. Langdon, Cancer Biol. Med., 2018, 15, 375.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Chen, Y. Qiu, P. Guo, T. Pu, Y. Feng, H. Bu, Oncol. Lett., 2018, 15, 8206.

    PubMed  PubMed Central  Google Scholar 

  24. M. P. Wickramathilaka, B. Y. Tao, J. Biol. Eng., 2019, 13, 63.

    PubMed  PubMed Central  Google Scholar 

  25. J. W. Goding, J. Immunol. Methods, 1976, 13, 215.

    CAS  PubMed  Google Scholar 

  26. A. Boyum, Scand. J. Clin. Lab. Invest., 1968, 97, 77.

    CAS  Google Scholar 

  27. F. Denizot, R. Lang, J. Immunol. Methods, 1986, 89, 271.

    CAS  PubMed  Google Scholar 

  28. G. Hermanson, Bioconjugate Techniques, Academic Press, 2013, 1200 p.

  29. M. J. Ernsting, M. Murakami, A. Roy, S. Li, J. Control. Release, 2013, 172, 782.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. Chan, Nano Lett., 2009, 9, 1909.

    CAS  PubMed  Google Scholar 

  31. H. Kobayashi, M. W. Brechbiel, Mol. Imaging, 2003, 2, 1.

    CAS  PubMed  Google Scholar 

  32. H. Kobayashi, M. W. Brechbiel, Adv. Drug Deliv., 2005, 57, 2271.

    CAS  Google Scholar 

  33. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangion, Nat. Biotechnol., 2007, 25, 1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. A. R. Menjoge, R. M. Kannan, D. A. Tomalia, Drug Discov., 2010, 15, 171.

    CAS  Google Scholar 

  35. J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning, J. Zheng, J. Am. Chem. Soc., 2013, 135, 4978.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. R. R. Arvizo, Nano Lett., 2010, 10, 2543.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. V. Forest, J. Pourchez, Mat. Sci. Eng. C: Mater., 2017, 70, 889.

    CAS  Google Scholar 

  38. G. Posypanova, S. Severin, Alpha-Fetoprotein: Functions and Clinical Applications, In: Alpha-fetoprotein:Functions and Clinical Applications, Eds N. Lakhi, M. Oretti, Nova Science Publishes, NY, 2016, 15, 277.

    Google Scholar 

  39. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.

    CAS  Google Scholar 

  40. I. H. Kankia, H. S. Khalil, S. P. Langdon, P. R. Moult, J. L. Bown, Y. Y. Deeni, Oxid. Med. Cell. Longev., 2017, 2017, 1864578.

    PubMed  PubMed Central  Google Scholar 

  41. R. Mishra, S. Alanazi, L. Yuan, T. Solomon, T. M. Thaker, N. Jura, J. T. Garrett, Oncotarget., 2018, 9, 27773.

    PubMed  PubMed Central  Google Scholar 

  42. C. Lauand, E. L. Niero, V. M. Dias, G. M. Machado-Santelli, Braz. J. Med. Biol. Res., 2015, 48, 382–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. G. A. Posypanova, N. V. Gorokhovets, V. A. Makarov, L. V. Savvateeva, N. N. Kireeva, S. E. Severin, E. S. Severin. J. Drug. Target., 2008, 16, 321–328.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Yabbarov.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-29-09022/19).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0793–0803, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokol, M.B., Faustova, M.R., Nikolskaya, E.D. et al. Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers. Russ Chem Bull 69, 793–803 (2020). https://doi.org/10.1007/s11172-020-2835-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2835-2

Key words

Navigation