Skip to main content
Log in

Nickel(ii) N-heterocyclic carbene complexes as efficient catalysts for the Suzuki—Miyaura reaction

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Catalytic activity of nickel(ii) and palladium(ii) N-heterocyclic carbene (NHC) complexes derived from imidazole, benzimidazole, and 1,2,4-triazole was comparatively evaluated in the cross-coupling reactions of aryl halides with arylboronic acids. Readily available nickel bis-NHC complexes (NHC)2NiX2 (X = Cl, Br, or I) exhibited the activity comparable to that of the structurally related palladium complexes and, consequently, can be applied as efficient catalysts for the Suzuki—Miyaura reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett., 1979, 20, 3437.

    Google Scholar 

  2. N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun., 1979, 19, 866.

    Google Scholar 

  3. F.-S. Han, Chem. Soc. Rev., 2013, 42, 5270.

    CAS  PubMed  Google Scholar 

  4. I. P. Beletskaya, F. Alonso, V. Tyurin, Coord. Chem. Rev., 2019, 385, 137.

    CAS  Google Scholar 

  5. S. E. Hooshmand, B. Heidari, R. Sedghi, R. S. Varma, Green Chem., 2019, 21, 381.

    CAS  Google Scholar 

  6. A. Taheri Kal Koshvandi, M. M. Heravi, T. Momeni, Appl. Organomet. Chem., 2018, 32, e4210.

    Google Scholar 

  7. C. Torborg, M. Beller, Adv. Synth. Catal., 2009, 351, 3027.

    CAS  Google Scholar 

  8. P. Devendar, R.-Y. Qu, W.-M. Kang, B. He, G.-F. Yang, J. Agric. Food Chem., 2018, 66, 8914.

    CAS  PubMed  Google Scholar 

  9. V. N. Mikhaylov, V. N. Sorokoumov, I. A. Balova, Russ. Chem. Rev., 2017, 86, 459.

    CAS  Google Scholar 

  10. A. Yu. Chernenko, A. V. Astakhov, D. V. Pasyukov, P. V. Dorovatovskii, Ya. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 79.

    CAS  Google Scholar 

  11. N. V. Kuchkina, M. Rajadurai, M. Pal, S. Basaveni, S. A. Sorokina, I. Yu. Krasnova, E. S. Serkova, Z. B. Shifrina, Russ. Chem. Bull., 2018, 67, 1035.

    CAS  Google Scholar 

  12. S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature, 2014, 509, 299.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. V. P. Ananikov, ACS Catal., 2015, 5, 1964.

    CAS  Google Scholar 

  14. N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem., 2017, 1, 0025.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Z. N. Gafurov, A. A. Kagilev, A. O. Kantyukov, A. A. Balabaev, O. G. Sinyashin, D. G. Yakhvarov, Russ. Chem. Bull., 2018, 67, 385.

    CAS  Google Scholar 

  16. Z. N. Gafurov, A. O. Kantyukov, A. A. Kagilev, A. A. Balabayev, O. G. Sinyashin, D. G. Yakhvarov, Russ. Chem. Bull., 2017, 66, 1529.

    CAS  Google Scholar 

  17. D. Balcells, A. Nova, ACS Catal., 2018, 8, 3499.

    CAS  Google Scholar 

  18. F. Strieth-Kalthoff, A. R. Longstreet, J. M. Weber, T. F. Jamison, ChemCatChem, 2018, 10, 2873.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ł. Banach, P. A. Guńka, J. Zachara, W. Buchowicz, Coord. Chem. Rev., 2019, 389, 19.

    CAS  Google Scholar 

  20. J. B. Diccianni, T. Diao, Trends Chem., 2019, 1, 830; DOI: https://doi.org/10.1016/j.trechm.2019.08.004.

    Google Scholar 

  21. P. L. Chiu, C.-L. Lai, C.-F. Chang, C.-H. Hu, H. M. Lee, Organometallics, 2005, 24, 6169.

    CAS  Google Scholar 

  22. K. Inamoto, J.-i. Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T. Sakamoto, Organometallics, 2006, 25, 3095.

    CAS  Google Scholar 

  23. Y. Zhou, Z. Xi, W. Chen, D. Wang, Organometallics, 2008, 27, 5911.

    CAS  Google Scholar 

  24. K. Inamoto, J.-i. Kuroda, E. Kwon, K. Hiroya, T. Doi, J. Organomet. Chem., 2009, 694, 389.

    CAS  Google Scholar 

  25. M. Nirmala, G. Prakash, R. Ramachandran, P. Viswanathamurthi, J. G. Malecki, W. Linert, J. Mol. Catal. A: Chem., 2015, 397, 56.

    CAS  Google Scholar 

  26. S. Wang, F. Ren, Y. Qiu, M. Luo, J. Organomet. Chem., 2015, 788, 27.

    CAS  Google Scholar 

  27. S. Gu, J. Du, J. Huang, Y. Guo, L. Yang, W. Xu, W. Chen, Dalton Trans., 2017, 46, 586.

    CAS  PubMed  Google Scholar 

  28. H. V. Huynh, C. Holtgrewe, T. Pape, L. L. Koh, E. Hahn, Organometallics, 2006, 25, 245.

    CAS  Google Scholar 

  29. J. Berding, J. A. van Paridon, V. H. S. van Rixel, E. Bouwman, Eur. J. Inorg. Chem., 2011, 2450.

  30. A. V. Astakhov, O. V. Khazipov, E. S. Degtyareva, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2015, 34, 5759.

    CAS  Google Scholar 

  31. K. Zhang, M. Conda-Sheridan, S. R. Cooke, J. Louie, Organometallics, 2011, 30, 2546.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. J. C. Bernhammer, H. V. Huynh, Organometallics, 2014, 33, 5845.

    CAS  Google Scholar 

  33. K. Matsubara, S. Miyazaki, Y. Koga, Y. Nibu, T. Hashimura, T. Matsumoto, Organometallics, 2008, 27, 6020.

    CAS  Google Scholar 

  34. H. Valdés, M. Poyatos, G. Ujaque, E. Peris, Chem. Eur. J., 2015, 21, 1578.

    PubMed  Google Scholar 

  35. C. D. Abernethy, A. H. Cowley, R. A. Jones, J. Organomet. Chem., 2000, 596, 3.

    CAS  Google Scholar 

  36. C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J., 2006, 12, 4743.

    PubMed  Google Scholar 

  37. A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981.

    CAS  Google Scholar 

  38. S. Gupta, B. Basu, S. Das, Tetrahedron, 2013, 69, 122.

    CAS  Google Scholar 

  39. V. M. Chernyshev, A. V. Astakhov, I. E. Chikunov, R. V. Tyurin, D. B. Eremin, G. S. Ranny, V. N. Khrustalev, V. P. Ananikov, ACS Catal., 2019, 9, 2984.

    CAS  Google Scholar 

  40. D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev., 2017, 346, 2.

    CAS  Google Scholar 

  41. E. G. Gordeev, D. B. Eremin, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2018, 37, 787.

    CAS  Google Scholar 

  42. O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, D. B. Eremin, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2018, 37, 1483.

    CAS  Google Scholar 

  43. E. A. Denisova, D. B. Eremin, E. G. Gordeev, A. M. Tsedilin, V. P. Ananikov, Inorg. Chem., 2019, 58, 12218.

    CAS  PubMed  Google Scholar 

  44. D. Eremin, E. Denisova, A. Kostyukovich, J. Martens, G. Berden, J. Oomens, V. Khrustalev, V. Chernyshev, V. P. Ananikov, Chem. Eur. J., 2019, 25, 16564.

    CAS  Google Scholar 

  45. V. M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Yu. Chernenko, A. V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin, V. P. Ananikov, Chem. Sci., 2018, 9, 5564.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, I. L. Fedushkin, V. P. Ananikov, D. B. Eremin, E. G. Gordeev, I. P. Beletskaya, A. D. Averin, M. N. Bochkarev, A. A. Trifonov, U. M. Dzhemilev, V. A. D’yakonov, M. P. Egorov, A. N. Vereshchagin, M. A. Syroeshkin, V. V. Jouikov, A. M. Muzafarov, A. A. Anisimov, A. V. Arzumanyan, Yu. N. Kononevich, M. N. Temnikov, O. G. Sinyashin, Yu. H. Budnikova, A. R. Burilov, A. A. Karasik, V. F. Mironov, P. A. Storozhenko, G. I. Shcherbakova, B. A. Trofimov, S. V. Amosova, N. K. Gusarova, V. A. Potapov, V. B. Shur, V. V. Burlakov, V. S. Bogdanov, M. V. Andreev, Russ. Chem. Rev., 2018, 87, 393.

    CAS  Google Scholar 

  47. A. Yu. Chernenko, D. V. Pasyukov, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 1196.

    CAS  Google Scholar 

  48. K. Cavell, Dalton Trans., 2008, 47, 6676.

    Google Scholar 

  49. A. V. Astakhov, S. B. Soliev, E. G. Gordeev, V. M. Chernyshev, V. P. Ananikov, Dalton Trans., 2019, 48, 17052.

    CAS  PubMed  Google Scholar 

  50. T. Tu, H. Mao, C. Herbert, M. Xu, K. H. Dotz, Chem. Commun., 2010, 46, 7796.

    CAS  Google Scholar 

  51. Ł. Banach, P. A. Guńka, D. Gõrska, M. Podlewska, J. Zachara, W. Buchowicz, Eur. J. Inorg. Chem., 2015, 5677.

  52. O. R. Luca, B. A. Thompson, M. K. Takase, R. H. Crabtree, J. Organomet. Chem., 2013, 730, 79.

    CAS  Google Scholar 

  53. K. Matsubara, K. Ueno, Y. Shibata, Organometallics, 2006, 25, 3422.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

The authors are grateful to Academician of the Russian Academy of Sciences V. P. Ananikov for the fruitful discussion of the results and valuable comments. The authors are also grateful to the Shared Research Center “Nanotech nologies” of the M. I. Platov South-Russian State Polytechnic University (NPI) and the Department of Structural Studies of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences for carrying out the analytical experiments.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 16-29-10786).

Based on the materials of the International Conference “Catalysis and Organic Synthesis” (ICCOS-2019) (September 15–20, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0683–0690, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliev, S.B., Astakhov, A.V., Pasyukov, D.V. et al. Nickel(ii) N-heterocyclic carbene complexes as efficient catalysts for the Suzuki—Miyaura reaction. Russ Chem Bull 69, 683–690 (2020). https://doi.org/10.1007/s11172-020-2818-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2818-3

Key words

Navigation