Skip to main content
Log in

Structural features of composite protein-polysaccharide hydrogel in the presence of a carbon nanomaterial

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structures of a protein-polysaccharide composite hydrogel and its modifications prepared using carbon nanotubes (CNTs) were studied by small-angle X-ray scattering and scanning electron microscopy. A correlation between the morphology and physicochemical properties of the hydrogels is demonstrated taking the specific electrical conductivity of the hydrogels as an example. It is shown that the specific electrical conductivity is unambiguously related to the structure of the systems studied, viz., the higher the density of cross-links between biopolymer chains the lower the conductivity, and vice versa. It is found that the addition of CNTs to K-carrageenan—gelatin composite hydrogels can lead to either increase or decrease in their electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chirani, L. H. Yahia, L. Gritsch, F. L. Motta, S. Chirani, S. Fare, J. Biomed. Sci., 2015, 4, No. 2, 13.

    Google Scholar 

  2. A. R. Khokhlov, E. E. Dormidontova, Phys.-Usp. (Engl. Transl), 1997, 40, 109.

    Article  Google Scholar 

  3. Y. Li, J. Rodrigues, H. Tomas, Chem. Soc. Rev., 2012, 41, 2193.

    Article  CAS  PubMed  Google Scholar 

  4. N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, Adv. Mater., 2014, 26, 85.

    Article  CAS  PubMed  Google Scholar 

  5. S. L. Turgeon, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Set, 2007, 12, 166.

    Article  CAS  Google Scholar 

  6. C. Schmitt, S. L. Turgeon, Adv. Colloid Interface Sci., 2011, 167, 63.

    Article  CAS  PubMed  Google Scholar 

  7. L. R. Bogdanova, A. M. Rogov, O. S. Zueva, Yu. F. Zuev, Russ. Chem. Bull., 2019, 68, 400.

    Article  CAS  Google Scholar 

  8. O. I. Timaeva, I. I. Pashkin, G. M. Kuz’micheva, N. V. Sadovskaya, Mendeleev Commun., 2019, 29, 646.

    Article  CAS  Google Scholar 

  9. S. R. Derkach, N. G. Voron’ko, A. A. Maklakova, Yu. V. Kondratyuk, Colloidl., 2014, 76, 146.

    Article  CAS  Google Scholar 

  10. S. R. Derkach, S. O. Hyin, A. A. Maklakova, V. G. Kulichikhin, A. Y. Malkin, IWT Food Sci. Technol, 2015, 63, 612.

    CAS  Google Scholar 

  11. S. R. Derkach, N. G. Voron’ko, Yu. A. Kuchina, D. S. Kolotova, A. M. Gordeeva, D. A. Faizullin, Yu. A. Gusev, Yu. F. Zuev, O. N. Makshakova, Carbohydr. Polym., 2018, 197, 66.

    Article  CAS  PubMed  Google Scholar 

  12. I. J. Haug, K. I. Draget, O. Smidsrod, Carbohydr. Polym., 2014, 56, 11.

    Article  CAS  Google Scholar 

  13. Y. Pranoto, C. M. Lee, H. J. Park, IWT Food Sci. Technol., 2007, 40, 766.

    CAS  Google Scholar 

  14. O. N. Makshakova, D. A. Faizullin, Yu. F. Zuev, Carbohydr. Polym., 2020, 227, Article 115342.

  15. A. I. Usov, Adv. Carbohydr. Chem. Biochem., 2011, 65, 115.

    Article  CAS  PubMed  Google Scholar 

  16. I. M. Yermak, Y. S. Khotimchenko, Rec. Adv. Marine Technol., 2003, 9, 207.

    CAS  Google Scholar 

  17. F. Quignard, R. Valentin, F. Di Renzo, New J. Chem., 2008, 32, 1300.

    Article  CAS  Google Scholar 

  18. C. A. Garcia-Gonzalez, M. Alnaief, I. Smirnova, Carbohydr. Polym., 2011, 86, 1425.

    Article  CAS  Google Scholar 

  19. J. Fang, H. Niu, T. Lin, X. Wang, Chin. Sci. Bull., 2008, 53, 2265.

    Article  CAS  Google Scholar 

  20. N. Bhardwaj, S. C. Kundu, Biotechnol. Adv., 2010, 28, 325.

    Article  CAS  PubMed  Google Scholar 

  21. O. V. Maslova, O. V. Senko, E. N. Efremenko, Russ. Chem. Bull., 2018, 67, 614.

    Article  CAS  Google Scholar 

  22. D. V. Yudina, E. V. Blynskaja, K. V. Alekseev, A. I. Marakhova, Russ. Chem. Bull, 2018, 67, 787.

    Article  CAS  Google Scholar 

  23. B. S. Harrison, A. Atala, Biomaterials, 2007, 28, 344.

    Article  CAS  PubMed  Google Scholar 

  24. S. R. Shin, S. M. Jung, M. Zalabany, ACS Nano, 2013, 7, 2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. S.-M. Mesgar, Z. Mohammadi, S. Khosrovan, Trans. Phenom. Nano Micro Scales, 2018, 6, 72.

    Google Scholar 

  26. R. A. MacDonald, C. M. Voge, M. Kariolis, J. P. Stegemann, Acta Biomater, 2008, 4, 1583.

    Article  CAS  PubMed  Google Scholar 

  27. C. M. Voge, J. Johns, M. Raghavan, M. D. Morris, J. P. Stegemann, J. Biomed. Mater. Res. Part A, 2013, 101A, 231.

  28. P. T. Lillehei, J.-W. Kim, L. J. Gibbons, C. Park, Nanotechnology, 2009, 20, 325708.

    Article  PubMed  CAS  Google Scholar 

  29. D. Poncelet, R. J. Neufeld, M. F. A. Goosen, B. Burgarski, V. Babak, AIChE J., 1999, 45, 2018.

    Article  CAS  Google Scholar 

  30. L. Gasperini, J. F. Mano, R. L. Reis, J. R. Soc. Interface, 2014, 11, 20140817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. A. Pettignano, M. Haring, L. Bernardi, N. Tanchoux, F. Quignard, D. D. Diaz, Mater. Chem. Front., 2017, 1, 73.

    Article  CAS  Google Scholar 

  32. SAXS Version 4.0, Software Reference Manual, M86E00005-0600, Braker AXS Inc., Madison, 2000.

  33. SASView 3.0.0, University of Tennessee, 2009-2013; http://www.sasview.org

  34. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, J.Appl. Cryst., 2003, 36, 1277.

    Article  CAS  Google Scholar 

  35. A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays, Wiley, New York, 1955, 268 pp.

    Google Scholar 

  36. I. J. Haug, K. I. Draget, in Handbook of Hydrocolloids, Eds G. O. Phillips, P. A. Williams, CRC Press, Boca Raton-Boston-New York-Washington, 2009, p. 142.

  37. O. Glatter, O. Kratky, Small-Angle X-Ray Scattering, Academic Press, London, 1982.

    Google Scholar 

  38. L. A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987, 335 pp.

    Book  Google Scholar 

  39. D. W. Schaefer, MRS Bull., 1988, 13, 22.

    Article  CAS  Google Scholar 

  40. M. Helminger, B. Wu, T. Kollmann, D. Benke, D. Schwann, V. Pipich, D. Faivre, D. Zahn, H. Cölfen, Adv. Fund. Mater, 2014, 24, 3187.

    Article  CAS  Google Scholar 

  41. R. Gelli, S. D. Buffa, P. Tempesti, M. Bonini, F. Ridi, P. Baglioni, Colloids Surf, A, 2017, 532, 18.

    Article  CAS  Google Scholar 

  42. S. M. Levachev, G. P. Yampol’skaya, S. R. Derkach, N. G. Voron’ko, M. A. Sakvarelidze, V. N. Izmailova, Polym. Sci. Ser. C, 2004, 46, 73.

    Google Scholar 

  43. H. B. Bohidar, Int. J. Biol. Macromol, 1998, 23, 1.

    Article  CAS  PubMed  Google Scholar 

  44. S. Derkach, I. Zhabyko, N. Voron’ko, A. Maklakova, Dyakina, Colloids Surf., A: Physicochem. Eng. Asp., 2015, 483, 216.

    Article  CAS  Google Scholar 

  45. M. Ortiz-Zarama, A. Jiménez-Aparicio, M. Perea-Flores, J. Solorza-Feria, J. Food Eng., 2014, 120, 223.

    Article  CAS  Google Scholar 

  46. O. S. Zueva, O. N. Makshakova, B. Z. Idiyatullin, D. A. Faizullin, N. N. Benevolenskaya, A. O. Borovskaya, E. A. Sharipova, Yu. N. Osin, V. V Salnikov, Yu. F. Zuev, Russ. Chem. Bull., 2016, 65, 1208.

    Article  CAS  Google Scholar 

  47. A. Ben-Nairn, Hydrophobic Interaction, Plenum Press, New York, 1980, 311 pp.

    Book  Google Scholar 

  48. O. S. Zueva, A. O. Makarova, Yu. F. Zuev, Mater. Sci. Forum, 2019, 945, 522.

    Article  Google Scholar 

  49. O. S. Zueva, A. O. Makarova, D. A. Faizullin, Solid State Phenom., 2017, 265, 342.

    Article  Google Scholar 

  50. E. R. Zvereva, A. O. Makarova, O. S. Zueva, IOP Conference Series: Earth and Environmental Science, 2019, 272, No. 022238.

  51. S. Haider, S.-Y. Park, K. Saeed, B. L. Farmer, Sens. Actuators, B, 2007, 124, 517.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Zuev.

Additional information

X-Ray studies (A. T. Gubaidullin) were carried out at the Spectro-Analytical Center of Collective Use at the Kazan Scientific Center of the Russian Academy of Sciences (facilities at the Laboratory of Diffraction Methods of Investigation).

This work was carried out within the framework of the State Assignment to the Kazan Scientific Center of the Russian Academy of Sciences (A. T. Gubaidullin, L. R. Bogdanova, L. Ya. Zakharova, Yu. F. Zuev — general analysis of the results obtained). It was financially supported in part by the Russian Foundation for Basic Research (Project No. 19-38-90085; A. O. Makarova — conductometry) and by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan within the framework of the Joint Project No. 18-415-160011 (L. R. Bogdanova, Yu. F. Zuev — SEM experiments).

Based on the materials of the International Markovnikov Congress on Organic Chemistry (June 21–28, 2019, Moscow-Kazan, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0581—0589, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zueva, O.S., Gubaidullin, A.T., Makarova, A.O. et al. Structural features of composite protein-polysaccharide hydrogel in the presence of a carbon nanomaterial. Russ Chem Bull 69, 581–589 (2020). https://doi.org/10.1007/s11172-020-2802-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2802-y

Keywords

Navigation