Skip to main content

Advertisement

Log in

Selective synthesis of the two main progesterone metabolites, 3α-hydroxy-5α-pregnanolone (allopregnanolone) and 3α-hydroxypregn-4-en-20-one, and an assessment of their effect on proliferation of hormone-dependent human breast cancer cells

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A directed synthesis of two progesterone metabolites, allopregnanolone and 3a-hydroxy-pregn-4-en-20-one, from Δ16-pregnanolone and progesterone, respectively, was carried out by a reduction of the carbonyl groups in positions 3 and subsequent inversion of the configuration of the resulting alcohols by the Mitsunobu reaction. The selectivity of the reduction of the conjugated carbonyl group in position 3 of progesterone with sodium borohydride in the presence of cerium(III) chloride (Luche reduction) was demonstrated. The ef ect of the obtained metabolites on the proliferation of breast cancer cells of the MCF-7 and T47D lines under normal and steroid-free conditions was studied. It is shown that the ef ect of these compounds on the proliferation depends on the presence of additional steroids in the culture medium. Metabolites exerted small cytostatic ef ects on the growth of the MCF-7 cells under standard conditions, while the transfer of the cells to a steroid-free medium weakened these cytotoxic ef ects. In the experiments with the T47D line cells, the cell growth was stimulated under both standard and steroid-free conditions. Allopregnanolone and progesterone stimulate the growth to a greater extent under steroid-free conditions than under standard ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sitruk-Ware, Climacteric., 2018, 21, 315.

    Article  CAS  Google Scholar 

  2. Steroid Analysis, Eds J. Makin, D. B. Gower, Springer Sci. and Business Media, 2010, 559.

    Book  Google Scholar 

  3. M. Sinreih, S. Zukunft, I. Sosič, J. Cesar, S. Gobec, J. Adamski, T. L. Rižner, PLoS ONE, 2015, 10(2), e0117984.

    Article  Google Scholar 

  4. J. P. Wiebe, Endocr. Relat. Cancer., 2006, 13, 717.

    Article  CAS  Google Scholar 

  5. J. P. Wiebe, G. Zhang, I. Welch, H. T. Cadieux-Pitre, Breast Cancer Res., 2013, 15, R38, https://doi.org/10.1186/bcr3422.

    Article  Google Scholar 

  6. J. P. Wiebe, D. Muzia, J. Hu, D. Szwajcer, S. A. Hill, J. L. Seachrist, Cancer Res., 2000, 60, 936.

    CAS  PubMed  Google Scholar 

  7. J. P. Wiebe, M. Beausoleil, G. Zhang, V. Cialacu, J. Steroid Biochem. Mol. Biol., 2010, 118, 125.

    Article  CAS  Google Scholar 

  8. J. P. Wiebe, M. A. Rivas, M. F. Mercogliano, P. V. Elizalde, R. Schillaci, J. Steroid Biochem. Mol. Biol., 2015, 149, 27.

    Article  CAS  Google Scholar 

  9. I. S. Levina, A. K. Nazarov, G. V. Nazarov, L. E. Kulikova, Y. V. Kuznetsov, A. S. Dmitrenok, D. V. Minin, A. V. Aksenov, I. V. Zavar zin, J. Steroid Biochem. Mol. Biol., 2019, 194, 105436.

    Article  CAS  Google Scholar 

  10. J. P. Wiebe, C. Deline, K. D. Buckingham, Steroids, 1985, 45, 39.

    Article  CAS  Google Scholar 

  11. J.-L. Luche, L. Rodriguez-Hahn, P. Crabbe, J. Chem. Soc., Chem. Commun., 1978, 601.

    Google Scholar 

  12. F. Balssa, M. Fischer, Y. Bonnaire, Steroids, 2011, 76, 667.

    Article  Google Scholar 

  13. F. Journe, C. Chaboteaux, J.-C. Dumon, G. Leclercq, G. Laurent, J.-J. Body, Brit. J. Cancer, 2004, 91, 1703.

    Article  CAS  Google Scholar 

  14. J. P. Wiebe, M. J. Lewis, BMC Cancer, 2003, 3, 9.

    Article  Google Scholar 

  15. J. P. Wiebe, L. Souter, G. Zhang, J. Steroid Biochem. Mol. Biol., 2006, 100(4–5), 129.

    Article  CAS  Google Scholar 

  16. M. J. Lewis, J. P. Wiebe, J. G. Heathcote, BMC Cancer, 2004, 4, 27.

    Article  Google Scholar 

  17. J. P. Wiebe, K. J. Pawlak, A. Kwok, J. Steroid Biochem. Mol. Biol., 2016, 155, 166.

    Article  CAS  Google Scholar 

  18. M. Stefanovic, S. Lajsic, Tetrahedron Lett., 1967, 1777.

    Google Scholar 

  19. P. Bunyathaworn, S. Boonananwong, B. Kongkathip, N. Kong-kathip, Steroids, 2010, 75, 432.

    Article  CAS  Google Scholar 

  20. The Merck Index, 11th ed., 1989, Merck and Co., Inc., 275.

  21. C. J. MacNevin, F. Atif, I. Sayeed, D. G. Stein, D. C. Liotta, J. Med. Chem., 2009, 52, 6012.

    Article  CAS  Google Scholar 

  22. R. H. Purdy, A. L. Morrow, J. R. Blinn, S. M. Paul, J. Med. Chem., 1990, 33, 1572.

    Article  CAS  Google Scholar 

  23. V. Prelog, E. Tagmann, S. Liebermann, L. Ruzicka, Helv. Chim. Acta, 1947, 30, 1080.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Levina.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-29-09017).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0552–0557, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tserfas, M.O., Levina, I.S., Kuznetsov, Y.V. et al. Selective synthesis of the two main progesterone metabolites, 3α-hydroxy-5α-pregnanolone (allopregnanolone) and 3α-hydroxypregn-4-en-20-one, and an assessment of their effect on proliferation of hormone-dependent human breast cancer cells. Russ Chem Bull 69, 552–557 (2020). https://doi.org/10.1007/s11172-020-2797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2797-4

Keywords

Navigation