Skip to main content

Advertisement

Log in

Hydroconversion of 2-methylnaphtalene and dibenzothiophene over sulfide catalysts in the presence of water under CO pressure

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Unsupported highly dispersed nanosized catalysts based on transition metal sulfides were prepared insitu, in water-oil emulsions, by high-temperature decomposition of oil soluble metal precursors using elemental sulfur as sulfiding agent. Their catalytic activity was tested in hydroconversion of 2-methylnaphtalene and dibenzothiophene at 380 °C under H2 pressure of 5 MPa. In addition, the catalysts were tested in the same reactions in the CO−H2O medium (p(CO) = 5 MPa, the CO: H2O molar ratio was 2: 1, ω(H2O) = 20 wt.%) in which hydrogen is formed through a water gas shift reaction (WGSR). Unsupported Ni−Mo-sulfide catalysts were found to be the most active compared to catalysts supported on alumina. Transmission electron microscopy served to investigate the structure and determine general geometric characteristics of Ni−Mo−S particles formed in toluene—water medium by decomposition of transition metal naphthenates and hexacarbonyls in the presence of elemental sulfur under CO pressure. The method described in this study enables one to synthesize nanosized catalysts with a high content of active sulfide phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Klimov, K. A. Nadeina, P. P. Dik, G. I. Koryakina, V. Y. Pereyma, M. O. Kazakov, S. V. Budukva, E. Y. Gerasimov, I. P. Prosvirin, D. I. Kochubey, A. S. Noskov, Catal. Today, 2016, 271, 56.

    Article  CAS  Google Scholar 

  2. S. V. Egazar´yants, V. A. Vinokurov, A. V. Vutolkina, M. Y. Talanova, V. I. Frolov, E. A. Karakhanov, Chem. Technol. Fuels Oil, 2015, 51, 506.

    Article  Google Scholar 

  3. Y.-Y. Chen, M. Dong, J. Wang, H. Jiao, J. Phys. Chem. C, 2012, 116, 25368.

    Article  CAS  Google Scholar 

  4. R. Z. Lee, F. T. T. Ng, Catal. Today, 2006, 116, 505.

    Article  CAS  Google Scholar 

  5. A. V. Vutolkina, A. P. Glotov, A. V. Zanina, D. F. Makhmutov, A. L. Maximov, S. V. Egazar´yants, E.A. Karakhanov, Catal. Today, 2019, 329, 156.

    Article  CAS  Google Scholar 

  6. Al. A. Pimerzin, P. A. Nikul´shin, A. V. Mozhaev, A. A. Pimerzin, Petrol. Chem., 2013, 53, 245.

    Article  CAS  Google Scholar 

  7. P. A. Nikul´shin, V. A. Sal´nikov, Al. A. Pimerzin, Yu. V. Eremina, A. S. Koklyukhin, V. S. Tsvetkov, A. A. Pimerzin, Petrol. Chem., 2016, 56, 56.

    Article  Google Scholar 

  8. A. V. Vutolkina, A. P. Glotov, S. V. Egazar´yants, M. Y. Talanova, N. A. Sinikova, S. V. Kardashev, A. L. Maksimov, E. A. Karakhanov, Chem. Technol. Fuels Oil, 2016, 52, 515.

    Article  CAS  Google Scholar 

  9. E. R. Naranov, O. V. Golubev, A. I. Guseva, P. A. Nikulshin, S. V. Egazar´yants, A. L. Maksimov, E. A. Karakhanov, Petrol. Chem., 2017, 57, 1151.

    Article  CAS  Google Scholar 

  10. A. P. Glotov, V. D. Stytsenko, M. I. Artemova, M. S. Kotelev, E. V. Ivanov, P. A. Gushchin, V. A. Vinokurov, Catalysts, 2019, 9, 384.

    Article  Google Scholar 

  11. A. Alvarez, J. Ancheyta, Chem. Eng. Sci., 2008, 63, 662.

    Article  CAS  Google Scholar 

  12. A. V. Vutolkina, A. V. Akopyan, A. P. Glotov, M. S. Kotelev, A. L. Maksimov, E. A. Karakhanov, Russ. J. Appl. Chem., 2018, 91, 981.

    Article  CAS  Google Scholar 

  13. A. V. Vutolkina, D. F. Makhmutov, A. V. Zanina, A. L. Maximov, A. P. Glotov, N. A. Sinikova, E. A. Karakhanov, Petrol. Chem., 2018, 58, 528.

    Article  CAS  Google Scholar 

  14. M. I. Kniazeva, A. L. Maximov, Catalysts, 2018, 8, 644.

    Article  Google Scholar 

  15. A. V. Vutolkina, D. F. Makhmutov, A. V. Zanina, A. L. Maximov, D. S. Kopitsin, A. P. Glotov, S. V. Egazar´yants, E. A. Karakhanov, Petrol. Chem., 2018, 58, 1227.

    Article  CAS  Google Scholar 

  16. V. Costa, B. Guichard, M. Digne, C. Legens, P. Lecour, K. Marchand, P. Raybaud, E. Krebs, C. Geantet, Catal. Sci. Technol., 2013, 3, 140.

    Article  CAS  Google Scholar 

  17. P. Liu, J. Zhu, J. Zhang, P. X, K. Tao, D. Gao, D. Xue P, ACS Energy Lett., 2017, 2, 745.

    Article  CAS  Google Scholar 

  18. S. Kasztelan, H. Toulhoat, J. Grimblot, J. P. Bonnelle, Appl. Catal., 1984, 13, 127.

    Article  CAS  Google Scholar 

  19. Al. Pimerzin, A. Mozhaev, A. Varakin, K. Maslakov, P. Nikulshin, Appl. Catal., B, 2017, 205, 93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vutolkina.

Additional information

Based on the materials of the 18th International Symposium IUPAC “Macromolecular Metal Complexes” (June 10—13, 2019, Tver´, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0280–0288, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vutolkina, A.V., Glotov, A.P., Maximov, A.L. et al. Hydroconversion of 2-methylnaphtalene and dibenzothiophene over sulfide catalysts in the presence of water under CO pressure. Russ Chem Bull 69, 280–288 (2020). https://doi.org/10.1007/s11172-020-2757-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2757-z

Key words

Navigation