Skip to main content
Log in

Computer simulation of the crystal structure of tetrazino-tetrazine tetraoxide (TTTO) isomers with one and two independent molecules in the unit cell

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The crystal structure prediction for two isomeric forms of tetrazino-tetrazine tetraoxide (TTTO), viz., [1,2,3,4]tetrazino[5,6-e][1,2,3,4]tetrazine 1,3,6,8-tetraoxide and [1,2,3,4] tetrazino [5,6-e] [1,2,3,4] tetrazine 1,3,5,7-tetraoxide was performed using an original procedure to obtain the optimized point charges that approximate the molecular electrostatic potential. The best computational models were used for simulation of the crystal packing of the molecules within the framework of the atom-atom potential function method with the refined Lennard-Jones potential parameters (6-12) by optimizing the unit cell parameters and localizing the minima on the potential energy surfaces of the crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull., 2016, 65, 2315.

    Article  CAS  Google Scholar 

  2. A. Smirnov, O. Voron’ko, B. Korsunsky, T. Pivina, Chin. J. Explos. Propellants, 2015, 8, 1.

    Google Scholar 

  3. T. Klapotke, Chemistry of High-Energy Materials, 2nd ed., De Gruyter, Berlin, 2012, 257 pp.

    Book  Google Scholar 

  4. A. M. Churakov, V. A. Tartakovsky, Proc. Int. Conf. “37th Inter national Annual Conference of ICT”, Karlsruhe, 1998, V. 7.

    Google Scholar 

  5. H. Shechter, Synthesis of High Energy 1,2,3,4-Tetrazine-1,3- Di-N-oxides and Pentazine Poly-N-Oxides, Report AFRLSR- AR-TR-05-0032, Los Alamos National Laboratory, Los Alamos, 2004.

    Google Scholar 

  6. X. Song, J. Li, H. Hou, B. Wang, J. Comput. Chem., 2009, 30, 1816.

    Article  CAS  Google Scholar 

  7. H. M. Ammon, Struct. Chem., 2001, 12, 205.

    Article  CAS  Google Scholar 

  8. K. S. Christe, D. A. Dixon, M. Vasiliu, R. I. Wagner, R. Haiges, J. A. Boatz, H. L. Ammon, Propellants, Explosives, Pyrotechnics, 2015, 40, 463.

    Article  CAS  Google Scholar 

  9. J. L. Mendoza-Cortes, Q. An, W. A. Goddard III, C. Ye, S. Zybin, J. Comput. Chem., 2016, 37, 163.

    Article  CAS  Google Scholar 

  10. P. Politzer, P. Lane, J. S. Murray, Cent. Eur. J. Energ. Mater., 2013, 10, 37.

    CAS  Google Scholar 

  11. M. S. Klenov, A. A. Guskov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, I. V. Fedyanin, K. A. Lyssenko, V. A. Tartakovsky, Angew. Chem., Int. Ed., 2016, 55, 11472.

    Article  CAS  Google Scholar 

  12. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 1663.

    Article  CAS  Google Scholar 

  13. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 758.

    Article  CAS  Google Scholar 

  14. D. V. Khakimov, T. S. Pivina, Proc. Int. Conf. “20th New Trend in Research of Energetic Materials” (Pardubice, April 26—28, 2017), Pardubice, 2017.

    Google Scholar 

  15. D. V. Khakimov, V. P. Zelenov, N. M. Baraboshkin, T. S. Pivina, J. Mol. Model., 2019, 25, 107.

    Article  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, 2013, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford.

    Google Scholar 

  17. F. H. Allen, R. Taylor, Chem. Soc. Rev., 2004, 33, 463.

    Article  CAS  Google Scholar 

  18. F. A. Momany, L. M. Carruthers, R. F. McGuire, H. A. Scheraga, J. Phys. Chem., 1974, 78, 1595.

    Article  CAS  Google Scholar 

  19. C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants, Explosives, Pyrotechnics, 2010, 35, 333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khakimov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0212–0217, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakimov, D.V., Dzyabchenko, A.V. & Pivina, T.S. Computer simulation of the crystal structure of tetrazino-tetrazine tetraoxide (TTTO) isomers with one and two independent molecules in the unit cell. Russ Chem Bull 69, 212–217 (2020). https://doi.org/10.1007/s11172-020-2748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2748-0

Keywords

Navigation