Skip to main content
Log in

Acidity of arylsulfonamides as function of quantum chemical parameters of sulfonamide nitrogen

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structures of aromatic sulfonamide molecules XPhSO2NH2 (X = H, 4-Me, 4-F, 4-Cl, 4-Br, 4-MeO, 4-OH, 4-NH2, 4-CN, 3-NO2, 4-NO2, 3,5-(NO2)2, 3,4-Cl2, 3-Cl-4-Me, 3,4-Me2, 3-Me-4-F, 2-Me) were calculated at the M06/6-311++G** (SMD) level of theory. The atomic electrostatic potentials (AEP) and the Hirshfeld charges of the sulfonamide nitrogen atoms were determined. Correlation equations relating the AEP to Bronsted acidities (pKa) of these compounds were obtained using published data and the previously unknown pKa values for a number of arylsulfonamides were calculated. These pKa values are consistent with independently determined free energies of acid dissociation of sulfonamides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Anand, in Burger’s Medicinal Chemistry and Drug Discovery, Ed. M. E. Wolff, Wiley and Sons, New York, 1996, 2, 527.

    Google Scholar 

  2. T. Gokcen, I. Gulcin, T. Ozturk, A. C. Goren, J. Enzyme Inhib. Med. Chem., 2016, 31, 180.

    Article  CAS  PubMed  Google Scholar 

  3. C. T. Supuran, Pathogens, 2016, 5, 44.

    Article  CAS  PubMed Central  Google Scholar 

  4. C. T. Supuran, Molecule, 2017, 22, Special Issue, 1642.

    Article  CAS  Google Scholar 

  5. P. Srivastava, S. Srivastava, A. K. Soni, R. K. Singh, J. Comp. Meth. Mol. Des., 2012, 2, 99.

    CAS  Google Scholar 

  6. J. R. B. Gomes, P. Gomes, Tetrahedron, 2005, 61, 2705.

    Article  CAS  Google Scholar 

  7. C. T. Supuran, J. Enzyme Inhib. Med. Chem, 2018, 33, 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zh.-Ch. Wang, Y.-T. Duan, H.-Y. Qiu, W.-Y. Huang, P.-F. Wang, X.-Q. Yan, Sh.-F. Zhang, H.-L. Zhu, RSCAdv., 2014, 4, 33029.

    CAS  Google Scholar 

  9. V. Alterio, A. Di Fiore, K. D’Ambrosio, C. T. Supuran, G. De Simone, Chem. Rev., 2012, 112, 4421.

    Article  CAS  PubMed  Google Scholar 

  10. A. E. Martell, R. J. Motekaitis, Determination and Use of Stability Constants, VCH Publishers, New York, 1992, 200 pp.

    Google Scholar 

  11. J. K. Seydel, J. Pharm. Sci., 1968, 57, 1455.

    Article  CAS  PubMed  Google Scholar 

  12. C. Soriano-Correa, R. O. Esquivel, R. P. Sagar, Int. J. Quant. Chem., 2003, 94, 165.

    Article  CAS  Google Scholar 

  13. Comprehensive Organic Chemistry. The Synthesis and Reactions of Organic Compounds, Eds D. Barton, W. D. Ollis, Vol. 3, Sulphur Compounds, Ed. D. N. Jones, Pergamon Press, Oxford, 1979, 1338 pp.

  14. A. W. Willi, Helv. Chim. Acta, 1956, 39, 46.

    Article  CAS  Google Scholar 

  15. G. Dauphin, A. Kergomard, Bull. Soc. Chim. Fr., 1961, Iss. 3, 486.

    CAS  Google Scholar 

  16. R. P. Bell, The Proton in Chemistry, Chapman and Holl, London, 1973, 310 pp.

    Book  Google Scholar 

  17. The Chemistry of Sulphonic Acids and Their Derivatives, Eds S. Patai, Z. Rappoport, Wiley and Sons, Chichester, 1991, p. 253.

    Google Scholar 

  18. A. S. Dneprovskii, T. I. Temnikova, Teoreticheskie osnovy organicheskoy khimii [Theoretical Foundations of Organic Chemistry], Khimiya, Leningrad, 1991, 560 pp. (in Russian).

    Google Scholar 

  19. P. G. Seybold, Adv. Quant. Chem., 2012, 64, 84.

    Google Scholar 

  20. Chemical Reactivity Theory. A Density Functional View, Ed. P. K. Chattaraj, CRC Press, Boka Raton, 2009, 576 pp.

    Google Scholar 

  21. K. Gupta, S. Giri, P. K. Chattaraj, New J. Chem., 2008, 32, 1945.

    Article  CAS  Google Scholar 

  22. V. I. Dvorkin, Metrologiya i obespechenie kachestva kolichest-vennogo khiicheskogo analiza [Metrology and Quality Assurance of Quantitative Chemical Analysis], Khimiya, Moscow, 2001, 263 pp. (in Russian).

    Google Scholar 

  23. E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2014. SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2014; http://www.scm.com.

    Google Scholar 

  24. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B, 2009, 113, 6378.

    Article  CAS  Google Scholar 

  25. B. Mennucci, R. Cammi, Continuum Solvation Models in Chemical Physics: From Theory to Applications, John Wiley & Sons, Chichester, 2008, p. 65.

    Google Scholar 

  26. F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129.

    Article  CAS  Google Scholar 

  27. S. Liu, Acta Phys.-Chim. Sin., 2009, 25, 590.

    CAS  Google Scholar 

  28. Y. Zhao, D. C. Truhlar, Chem. Phys. Lett., 2011, 502, 1.

    Article  CAS  Google Scholar 

  29. C. Zhang, C. B. Nusgrave, J. Phys. Chem., 2007, A 111, 1554.

    Article  CAS  Google Scholar 

  30. C.-G. Zhan, J. A. Nicols, D. A. Dixon, J. Phys. Chem., 2003, A 107, 4184.

    Article  CAS  Google Scholar 

  31. P. Politzer, J. S. Murray, in Concepts and Methods in Modern Theoretical Chemistry, Eds S. K. Ghosh, P. K. Chattaraj, CRC Press, New York, 2013, p. 181.

  32. A Matter of Density. Exploring the Electron Density Concept in the Chemistry, Biological and Materials Sciences, Ed. N. Sukumar, Wiley and Sons Inc., Hoboken, 2013, 318 pp.

    Google Scholar 

  33. O. V. Kloos, G. V. Nedvedskaya, Yu. A. Aizina, I. B. Rozentsveing, Izv. Vyz. Prikl. Khim. Biotekhnol. [Bull. Higher Educ. Inst. Appl. Chem. Biotechnol..], 2016, 6, 23 (in Russian).

    Google Scholar 

  34. O. A. Reutov, I. P. Beletskaya, K. P. Butin, CH-Kisloty [CH-Acids], Nauka, Moscow, 1980, 248 pp. (in Russian).

    Google Scholar 

  35. Yu. A. Ustynyuk, Lektsii po organicheskoy khimii, ch. 1. Vvodnyj kontsentr [Lectures in Organic Chemistry, Part 1. Introductory Level], Tekhnosfera, Moscow, 2015, 504 pp. (in Russian).

    Google Scholar 

  36. E. G. Gordeev, Candidate of Science (Chem.) Thesis, Lomonosov Moscow State Academy of Fine Chemical Technologies (MITKhT), Moscow, 2007, 150 pp. (in Russian).

    Google Scholar 

  37. E. N. Krylov, M. S. Gruzdev, L. V. Virzum, Butlerov. Soobshch. [Butlerov Commun.], 2015, 42, 117 (in Russian).

    Google Scholar 

  38. N. A. Bagrovskaya, V. A. Kozlov, A. V. Noskov, Izv. Vuz. Khim. Khim. Tekhnol. [Bull. Higher Educ. Inst. Chem. Chem. Technol.], 2006, 49, 124 (in Russian).

    CAS  Google Scholar 

  39. V. A. Kozlov, B. D. Berezin, I. A. Popkova, Zh. Fiz. Khim., 1981, 55, 1481 [Russ. J. Phys. Chem., 1981, 55].

    CAS  Google Scholar 

  40. M. V. Ischutkina, O. G. Khelevina, V. V. Aleksandriiskii, O. I. Koifman, E. N. Krylov, Russ. J. Organ. Chem., 2015, 51, 1652.

    Article  CAS  Google Scholar 

  41. M.V. Belyakova, E. A. Zubanova, E. N. Krylov, Izv. Vuz. Khim. Khim. Tekhnol. [Russ. J. Chem. Chem. Technol.], 2013, 56, Iss. 11, 23 (in Russian).

    Google Scholar 

  42. M. S. Gruzdev, L. V. Virzum, E. N. Krylov, Butlerov. Soobshch. [Butlerov Commun.], 2015, 41, 115 (in Russian).

    Google Scholar 

  43. Concepts and Methods in Modern Theoretical Chemistry, Eds S. K. Ghosh, P. K. Chattaraj, CRC Press, New York, 2013, 450 pp.

    Google Scholar 

  44. Theoretical Aspects of Chemical Reactivity, Ed. A. Toro-Labbe, Elsevier, Amsterdam, 2007, 321 pp.

    Google Scholar 

  45. E. N. Krylov, Vestn. Ivanovskogo Gos.Un-ta [Bull. Ivanovo State Univ.], 2014, Iss. 2, 39 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Krylov.

Additional information

Based on the materials of the V All-Russian Organic Chemistry Conference (ROCC-V) (September 10–14, 2018, Vladikavkaz, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, E.N., Virzum, L.V. Acidity of arylsulfonamides as function of quantum chemical parameters of sulfonamide nitrogen. Russ Chem Bull 68, 527–531 (2019). https://doi.org/10.1007/s11172-019-2449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2449-8

Key words

Navigation