Russian Chemical Bulletin

, Volume 68, Issue 1, pp 24–31 | Cite as

Synthesis and structures of zirconium complexes [Et2H2N]+2[ZrCl6]2–, [Me3NCH2Ph]+2[ZrCl6]2–•MeCN, [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–•2 MeCN, and [Ph4Sb]+2[ZrCl6]2–

  • V. V. SharutinEmail author
  • O. K. Sharutina
  • N. M. Tarasova
  • O. S. El′tsov
Full Articles


The complexes [Et2H2N]+2[ZrCl6]2– (1), [Me3NCH2Ph]+2[ZrCl6]2–•MeCN (2), [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–•2 MeCN (3), and [Ph4Sb]+2[ZrCl6]2– (4) were synthesized by the reaction of zirconium tetrachloride with tetraorganylammonium, -phosphonium, and -stibonium chlorides in acetonitrile and structurally characterized. The nitrogen, phosphorus, and antimony atoms in the cations have a distorted tetrahedral geometry. The Zr–Cl distances in the centrosymmetric octahedral [ZrCl6]2− anions of complexes 1–4 have similar values, the longest bonds being observed in the anion of complex 4. Acetonitrile molecules are involved in the structural organization of the crystals of complex 3via weak hydrogen bonding with phenyl hydrogen atoms of the organylphosphonium cations. In the crystal of 2, no hydrogen bonds between the cations and solvent molecules are observed; acetonitrile molecules fill the cavities formed by cations and anions.

Key words

tetraorganylammonium -phosphonium and -stibonium hexachlorozirconates synthesis structure X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. M. Dzhemilev, O. S. Vostrikova, A. G. Ibragimov, Russ. Chem. Rev., 1986, 55, 66.CrossRefGoogle Scholar
  2. 2.
    I. Schwartz, J. Labinger, Angew. Chem., Int. Ed., Engl., 1976, 15, 333.CrossRefGoogle Scholar
  3. 3.
    J. Schwartz, Pure Appl. Chem., 1980, 52, 733.CrossRefGoogle Scholar
  4. 4.
    J. S. Rogers, G. C. Bazan, C. K. Sperry, J. Am. Chem. Soc., 1997, 119, 9305.CrossRefGoogle Scholar
  5. 5.
    K.-T. Wang, Y.-X. Wang, B. Wang, Y.-G. Li, Y.-S. Li, Dalton Trans., 2016, 45, 10308.CrossRefGoogle Scholar
  6. 6.
    S. M. Yu, U. Tritschler, I. Göttker-Schnetmann, S. Mecking, Dalton Trans., 2010, 39, 4612.CrossRefGoogle Scholar
  7. 7.
    D. A. X. Fraser, Z. R. Turner, J.-Ch. Buffet, D. O´Hare, Organometallics, 2016, 35, 2664.CrossRefGoogle Scholar
  8. 8.
    N. Nakata, T. Toda, Y. Saito, Polymers, 2016, 8, 31.CrossRefGoogle Scholar
  9. 9.
    G. W. Theaker, C. Morton, P. Scott, Macromolecules, 2011, 44, 1393.CrossRefGoogle Scholar
  10. 10.
    Th. Holtrichter-Rößmann, I. C.-G. Häger, C.-G. Daniliuc, R. Fröhlich, K. Bergander, C. Troll, B. Rieger, R. S. Rojas, E.-U. Wü rthwein, Organometallics, 2016, 35, 1906.CrossRefGoogle Scholar
  11. 11.
    Sh. Yuan, L. Wang, Y. Hua, J. Zhang, W.-H. Sun, Z. Naturforsch., B: Chem. Sci., 2016, 71, 1019.Google Scholar
  12. 12.
    T. Cuenca, J. C. Flores, P. Royo, J. Organomet. Chem., 1993, 462, 191.CrossRefGoogle Scholar
  13. 13.
    X. Xu, G. Kehr, C. G. Daniliuc, G. Erker, J. Am. Chem. Soc., 2015, 137, 4550.CrossRefGoogle Scholar
  14. 14.
    G. Blay, I. Fernandez, A. Monleon, J. R. Pedro, C. Vila, Org. Lett., 2007, 9, 2601.CrossRefGoogle Scholar
  15. 15.
    G. Blay, I. Fernandez, A. Monleon, J. R. Pedro, C. Vila, Org. Lett., 2009, 11, 441.CrossRefGoogle Scholar
  16. 16.
    L.-P. Mo, Zh.-H. Zhang, Curr. Org. Chem., 2011, 15, 3800.CrossRefGoogle Scholar
  17. 17.
    I. Buscaglioni, C. M. Stables, H. Sutcliffe, Inorg. Chim. Acta, 1988, 146, 33.CrossRefGoogle Scholar
  18. 18.
    I. Buscaglioni, H. Sutcliffe, J. Alloys Compd., 1992, 185, 67.CrossRefGoogle Scholar
  19. 19.
    E. Hartmann, K. Dehnicke, D. Fenske, H. Goesmann, G. Baum, Z. Naturforsch., B: Chem. Sci., 1989, 44, 1155.Google Scholar
  20. 20.
    S. G. Minasian, K. S. Boland, R. K. Feller, A. J. Gaunt, S. A. Kozimor, I. May, S. D. Reilly, B. L. Scott, D. K. Shuh, Inorg. Chem., 2012, 51, 5728.CrossRefGoogle Scholar
  21. 21.
    L. Chen, F. A. Cotton, W. F. Wojtczak, Inorg. Chem., 1997, 36, 4047.CrossRefGoogle Scholar
  22. 22.
    S. G. Minasian, K. S. Boland, R. K. Feller, A. J. Gaunt, S. A. Kozimor, I. May, S. D. Reilly, B. L. Scott, D. K. Shuh, Inorg. Chem., 2012, 51, 5728.CrossRefGoogle Scholar
  23. 23.
    F. Gauch, J. Strahle, Z. Anorg. Allg. Chem., 2000, 626, 1153.CrossRefGoogle Scholar
  24. 24.
    Zh. Jiang, J.-P. Zhao, X.-M. Ma, Sh.-D. Bai, Acta Cryst., 2016, E72, 432.Google Scholar
  25. 25.
    M. Yang, N. Pati, G. Bélanger-Chabot, M. Hiraia, F. P. Gabbaï, Dalton Trans., 2018, 47, 11843.CrossRefGoogle Scholar
  26. 26.
    K. Ruhlandt-Senge, A. D. Bacher, U. Muller, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1990, 46, 1925.CrossRefGoogle Scholar
  27. 27.
    R. Borjas, S. M. Balasekaran, F. Poineau, IUCrData, 2018, 3, x180528.Google Scholar
  28. 28.
    L. Chen, F. A. Cotton, W. A. Wojtczak, Inorg. Chim. Acta, 1996, 252, 239.CrossRefGoogle Scholar
  29. 29.
    Bruker, SMART and SAINT-Plus, Versions 5.0. Data Collection and Processing Software for the SMART System, Bruker AXS Inc., Madison, Wisconsin, 1998, USA.Google Scholar
  30. 30.
    Bruker, SHELXTL/PC, versions 5.10, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Bruker AXS Inc., Madison, Wisconsin, 1998, USA.Google Scholar
  31. 31.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Pusch mann, J. Appl. Cryst., 2009, 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • V. V. Sharutin
    • 1
    Email author
  • O. K. Sharutina
    • 1
  • N. M. Tarasova
    • 1
  • O. S. El′tsov
    • 2
  1. 1.South Ural State UniversityChelyabinskRussian Federation
  2. 2.Ural Federal University named after the first President of Russia B. N. YeltsinEkaterinburgRussian Federation

Personalised recommendations