Electrochemical DNA sensors on the basis of electropolymerized thionine and Azure B with addition of pillar[5]arene as an electron transfer mediator


A DNA sensor was developed on the basis of glassy carbon electrode coated with polymeric forms of thionine and Azure B. Introduction of carbon black and pillar[5]arene into the electrode composition increases the efficiency of polymerization and the oxidation peak currents of dyes due to the mediating effect of the macrocycle. The addition of DNA onto the sensor surface and into the reaction mixture differently influences the electrochemical activity of poly(Azure B) and polythionine. The control of changes in current-voltage characteristics allowed us to identify the heat denaturation of DNA and its oxidation by reactive oxygen species generated upon the reaction of hydrogen peroxide and copper(II) salt. The DNA sensors can find application in the diagnosis of DNA damage on exposure to carcinogens and in screening of cytotoxic anticancer drugs.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. Ahmad, S. A. Hashsham, Anal. Chim. Acta, 2012, 733, 1.

    CAS  Article  Google Scholar 

  2. 2.

    E. Hamidi-Asl, I. Palchetti, E. Hasheminejad, M. Mascini, Talanta, 2013, 115, 74.

    CAS  Article  Google Scholar 

  3. 3.

    A. Abi, Z. Mohammadpour, X. Zuo, A. Safavi, Biosens. Bioelectron., 2018, 102, 4789.

    Article  Google Scholar 

  4. 4.

    M. U. Ahmed, I. Saaem, P. C. Wu, A. S. Brown, Crit. Rev. Biotechnol., 2014, 34, 180.

    Article  Google Scholar 

  5. 5.

    E. Z. Ron, Curr. Opin. Biotechnol., 2007, 18, 252.

    CAS  Article  Google Scholar 

  6. 6.

    G. K. Mishra, A. Barfidokht, F. Tehrani, R. K. Mishra, Foods, 2018, 7, 141.

    Article  Google Scholar 

  7. 7.

    M. A. Alonso-Lomillo, O. Dominguez-Renedo, Curr. Pharm. Anal., 2017, 13, 169.

    CAS  Article  Google Scholar 

  8. 8.

    G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron., 2018, 103, 113.

    CAS  Article  Google Scholar 

  9. 9.

    J. H. T. Luong, K. B. Male, J. D. Glennon, Biotechnol. Adv., 2008, 26, 492.

    CAS  Article  Google Scholar 

  10. 10.

    S. Zhou, L. Yuan, X. Hua, L. Xu, S. Liu, Anal. Chim. Acta, 2015, 877, 19.

    CAS  Article  Google Scholar 

  11. 11.

    M. Can, N. O. Pekmez, A. Yildiz, Polymer, 2003, 44, 2585.

    CAS  Article  Google Scholar 

  12. 12.

    W. Chen, M. Josowicz, B. Datta, G. B. Schusterz, J. Janata, Electrochem. Solid-State Lett., 2008, 11, E11.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Hao, B. Zhou, F. Wang, J. Li, L. Deng, Y. Liu, Biosens. Bioelectron., 2014, 52, 422.

    CAS  Article  Google Scholar 

  14. 14.

    R. Shamagsumova, A. Porfireva, V. Stepanova, Y. Osin, G. Evtugyn, T. Hianik, Sens. Actuators B, 2015, 220, 573.

    CAS  Article  Google Scholar 

  15. 15.

    S. Pruneanu, S. A. F. Al-Said, L. Dong, T. A. Hollis, M. A. Galindo, N. G. Wright, A. Houlton, B. R. Horrocks, Adv. Funct. Mater., 2008, 18, 2444.

    CAS  Article  Google Scholar 

  16. 16.

    Yu. Kuzin, A. Ivanov, G. Evtugyn, T. Hianik, Electroanalysis, 2016, 28, 2956.

    CAS  Article  Google Scholar 

  17. 17.

    K. Zhang, Y. Zhang, Electroanalysis, 2010, 22, 673.

    CAS  Article  Google Scholar 

  18. 18.

    Y. Zhang, L. Huang, Microchim. Acta, 2012, 176, 463.

    CAS  Article  Google Scholar 

  19. 19.

    Md. M. Rahman, Y. J. Kim, J.-J. Lee, J. Electrochem. Soc., 2015, 162, B159.

    CAS  Article  Google Scholar 

  20. 20.

    C. C. Mayorga-Martinez, A. Chamorro-García, L. Serrano, L. Rivas, D. Quesada-Gonzalez, L. Altet, O. Francino, A. Sánchez, A. Merkoçi, J. Mater. Chem. B, 2015, 3, 5166.

    CAS  Article  Google Scholar 

  21. 21.

    T. Yang, Y. Hu, W. Li, K. Jiao, Colloids Surf. B, 2011, 83, 179.

    CAS  Article  Google Scholar 

  22. 22.

    V. Smolko, D. Shurpik, V. Evtugyn, I. Stoikov, G. Evtugyn, Electroanalysis, 2016, 28, 139.

    Article  Google Scholar 

  23. 23.

    D. N. Shurpik, L. S. Yakimova, L. I. Makhmutova, A. R. Makhmutova, I. Kh. Rizvanov, V. V. Plemenkov, I. I. Stoikov, Makroheterotsikly [Macroheterocycles], 2014, 7, 351 (in Russian).

    CAS  Article  Google Scholar 

  24. 24.

    J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, Inc., 2001.

    Google Scholar 

  25. 25.

    A. A. Karyakin, E. E. Karyakina, H.-L. Schmidt, Electroanalysis, 1999, 11, 149.

    CAS  Article  Google Scholar 

  26. 26.

    N. C. D. Nath, S. Sarker, Md. M. Rahman, H. J. Lee, Y. J. Kim, J.-J. Lee, Chem. Phys. Lett., 2013, 559, 56.

    CAS  Article  Google Scholar 

  27. 27.

    C. Chen, Y. Gao, J. Macromol. Sci. A, 2007, 44, 1089.

    CAS  Article  Google Scholar 

  28. 28.

    T. Ogoshi, Y. Hasegawa, A. Takamichi, Y. Ishimori, S. Inagi, T. Yamagishi, Macromolecules, 2011, 44, 7639.

    CAS  Article  Google Scholar 

  29. 29.

    R. Stoewe, W. A. Prutz, Free Radical Biol. Med., 1987, 3

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. V. Porfir’eva or I. I. Stoikov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0431–0437, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoikov, D.I., Porfir’eva, A.V., Shurpik, D.N. et al. Electrochemical DNA sensors on the basis of electropolymerized thionine and Azure B with addition of pillar[5]arene as an electron transfer mediator. Russ Chem Bull 68, 431–437 (2019). https://doi.org/10.1007/s11172-019-2404-8

Download citation

Key words

  • electropolymerization
  • biosensor
  • pillar[5]arene
  • polythionine
  • DNA damage