New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for ε-caprolactone polymerization

Abstract

The reactions of 3-benzyl-1,5-ditosyl-1,3,5-triazapentane (1) and 3-benzyl-1,5-dimesityl- 1,3,5-triazapentane (2) with one equivalent of Lappert´s germylene or stannylene (M[N(SiMe3)2]2, where M = Ge, Sn) produced germylenes and stannylenes of the general formula PhCH2N(CH2CH2NR)2M, where M = Ge, R = 4-MeC6H4SO2– (3); 2,4,6-Me3C6H2– (5); M = Sn, R = 4-MeC6H4SO2– (4); 2,4,6-Me3C6H2– (6), in satisfactory yields. According to NMR data (1H, 13C, 119Sn), stannylenes 4 and 6 are monomeric in solution, and the coordination number of tin is four. The synthesized stannylenes exhibited very high (compound 4) and moderate (compound 6) activity as initiators for bulk polymerization of ε-caprolactone, resulting in the synthesis of high-molecular-weight polymers with relatively narrow molecular-weight distribution. Previously unknown triamine 2 was synthesized by benzylation of HN(CH2CH2NHMes)2 with benzyl chloride in the presence of K2CO3.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun., 1974, 21, 895.

    Article  Google Scholar 

  2. 2.

    Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev., 2009, 109, 3479.

    CAS  Article  Google Scholar 

  3. 3.

    M. Weidenbruch, J. Organomet. Chem., 2002, 646, 39.

    CAS  Article  Google Scholar 

  4. 4.

    L. Álvarez-Rodríguez, J. A. Cabeza, P. García-Álvarez, D. Polo, Coord. Chem. Rev., 2015, 300, 1.

    Article  Google Scholar 

  5. 5.

    Y. Sarazin, J.-F. Carpentier, Chem. Rev., 2015, 115, 3564.

    CAS  Article  Google Scholar 

  6. 6.

    O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147.

    CAS  Article  Google Scholar 

  7. 7.

    P. Degeé, P. Dubois, R. Jerôme, S. Jacobsen, H.-G. Fritz, Macromol. Symp., 1999, 144, 289.

    Article  Google Scholar 

  8. 8.

    C.-M. Dong, K.-Y. Qiu, Z.-W. Gu, X.-D. Feng, Macromolecules, 2001, 34, 4691.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Nakayama, K. Aihara, Z. Cai, T. Shiono, C. Tsutsumi, Int. J. Mol. Sci., 2017, 18, 1312.

    Article  Google Scholar 

  10. 10.

    L. Wang, S. C. Rosca, V. Poirier, S. Sinbandhit, V. Dorcet, T. Roisnel, J. F. Carpentier, Y. Sarazin, Dalton Trans., 2014, 43, 4268.

    CAS  Article  Google Scholar 

  11. 11.

    L. Wang, V. Poirier, F. Ghiotto, M. Bochmann, R. D. Cannon, J. F. Carpentier, Y. Sarazin, Macromolecules, 2014, 47, 2574.

    CAS  Article  Google Scholar 

  12. 12.

    L. Wang, C. E. Kefalidis, S. Sinbandhit, V. Dorcet, J. F. Carpentier, L. Maron, Y. Sarazin, Chem.–A Eur. J., 2013, 19, 13463.

    CAS  Article  Google Scholar 

  13. 13.

    V. Poirier, T. Roisnel, S. Sinbandhit, M. Bochmann, J. F. Carpentier, Y. Sarazin, Chem.–A Eur. J., 2012, 18, 2998.

    CAS  Article  Google Scholar 

  14. 14.

    K. B. Aubrecht, M. A. Hillmyer, W. B. Tolman, Macromolec ules, 2002, 35, 644.

    CAS  Article  Google Scholar 

  15. 15.

    A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, D. J. Williams, Chem. Commun., 2001, 283.

    Google Scholar 

  16. 16.

    A. P. Dove, V. C. Gibson, E. L. Marshall, H. S. Rzepa, A. J. P. White, D. J. Williams, J. Am. Chem. Soc., 2006, 128, 9834.

    CAS  Article  Google Scholar 

  17. 17.

    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H. Dale, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2007, 47, 4464.

    Article  Google Scholar 

  18. 18.

    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2009, 3710.

    Google Scholar 

  19. 19.

    A. Dumitrescu, B. Martin-Vaca, H. Gornitzka, J. Cazaux, D. Bourissou, G. Bertrand, Eur. J. Inorg. Chem., 2002, 1948.

    Google Scholar 

  20. 20.

    B. N. Mankaev, K. V. Zaitsev, V. S. Timashova, G. S. Zaitseva, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2018, 67, 542.

    CAS  Article  Google Scholar 

  21. 21.

    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, Inorg. Chem., 2008, 47, 5417.

    CAS  Article  Google Scholar 

  22. 22.

    W. A. Ma, Z. X. Wang, Dalton Trans., 2011, 40, 1778.

    CAS  Article  Google Scholar 

  23. 23.

    K. Phomphrai, C. Pongchan-o, W. Thumrongpatanaraks, P. Sangtrirutnugul, P. Kongsaeree, M. Pohmakotr, Dalton Trans., 2011, 40, 2157.

    CAS  Article  Google Scholar 

  24. 24.

    J. L. Fauré, H. Gornitzka, R. Réau, D. Stalke, G. Bertrand, Eur. J. Inorg. Chem., 1999, 2295.

    Google Scholar 

  25. 25.

    M. Huang, M. M. Kireenko, E. K. Lermontova, A. V. Churakov, Y. F. Oprunenko, K. V. Zaitsev, D. Sorokin, K. Harms, J. Sundermeyer, G. S. Zaitseva, S. S. Karlov, Z. Anorg. Allg. Chem., 2013, 639, 502.

    CAS  Article  Google Scholar 

  26. 26.

    E. K. Lermontova, M. M. Huan, A. V. Churakov, J. A. K. Howard, M. V. Zabalov, S. S. Karlov, G. S. Zaitseva, J. Chem. Soc., Dalton Trans., 2009, 4695.

    Google Scholar 

  27. 27.

    M. Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, E. K. Lermontova, D. Sorokin, T. Linder, J. Sundermeyer, S. S. Karlov, G. S. Zaitseva, Eur. J. Inorg. Chem., 2012, 3712.

    Google Scholar 

  28. 28.

    Y. Feng, J. Aponte, P. J. Houseworth, P. D. Boyle, E. A. Ison, Inorg. Chem., 2009, 48, 11058.

    CAS  Article  Google Scholar 

  29. 29.

    K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics, 2004, 23, 2601.

    CAS  Article  Google Scholar 

  30. 30.

    P. E. Collier, S. M. Pugh, H. S. C. Clark, J. B. Love, A. J. Blake, F. G. N. Cloke, P. Mountford, Inorg. Chem., 2000, 39, 2001.

    CAS  Article  Google Scholar 

  31. 31.

    D. J. Wilson, A. Sebastian, F. G. N. Cloke, A. G. Avent, P. B. Hitchcock, Inorg. Chim. Acta, 2003, 345, 89.

    CAS  Article  Google Scholar 

  32. 32.

    R. R. Schrock, J. Adamchuk, K. Ruhland, L. P. H. Lopez, Organometallics, 2003, 22, 5079.

    CAS  Article  Google Scholar 

  33. 33.

    A. D. Schwarz, Z. Chu, P. Mountford, Organometallics, 2010, 29, 1246.

    CAS  Article  Google Scholar 

  34. 34.

    L.-C. Liang, R. R. Schrock, W. M. Davis, D. H. McConville, J. Am. Chem. Soc., 1999, 121, 5797.

    CAS  Article  Google Scholar 

  35. 35.

    L. Wang, C. E. Kefalidis, T. Roisnel, S. Sinbandhit, L. Maron, J.-F. Carpentier, Y. Sarazin, Organometallics, 2015, 34, 2139.

    CAS  Article  Google Scholar 

  36. 36.

    S. R. Foley, Y. Zhou, G. P. A. Yap, D. S. Richeson, Inorg. Chem., 2000, 39, 924.

    CAS  Article  Google Scholar 

  37. 37.

    F. Antolini, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert, Can. J. Chem., 2006, 84, 269.

    CAS  Article  Google Scholar 

  38. 38.

    K. V. Zaitsev, V. S. Cherepakhin, A. V. Churakov, A. S. Peregudov, B. N. Tarasevich, M. P. Egorov, G. S. Zaitseva, S. S. Karlov, Inorg. Chim. Acta, 2016, 443

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. S. Karlov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0389–0393, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mankaev, B.N., Zaitsev, K.V., Kuchuk, E.A. et al. New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for ε-caprolactone polymerization. Russ Chem Bull 68, 389–393 (2019). https://doi.org/10.1007/s11172-019-2397-3

Download citation

Key words

  • germanium
  • tin
  • germylenes
  • stannylenes
  • tetrylenes
  • ring-opening polymerization
  • poly-ε-caprolactone