Mechanism of electrochemical reduction of 5-thio derivatives of 2(5H)-furanone

Abstract

The anionoid elimination of the substituent from position 5 of the lactone ring is the predominant pathway of electrochemical reduction of 5-arylsulfanyl- and 5-arylsulfonyl-3,4-dichloro-2(5H)-furanones in acetonitrile. The contribution of the competing elimination of the chloride ion increases on going to 3,4-dichloro-5-ethylsulfanyl-2(5H)-furanone. An experimental criterion based on the morphology of cyclic voltammograms was proposed for identification of a particular pathway of electroreduction of 2(5H)-furanone derivatives.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Zhang, K. D. Sarma, T. T. Curran, Synlett, 2013, 24, 550.

    Article  Google Scholar 

  2. 2.

    K. Biswas, R. Gholap, P. Srinivas, S. Kanyal, K. Das Sarma, RSC Adv., 2014, 4, 2538.

    CAS  Article  Google Scholar 

  3. 3.

    A. R. Kurbangalieva, O. A. Lodochnikova, N. F. Devyatova, E. A. Berdnikov, O. I. Gnezdilov, I. A. Litvinov, G. A. Chmutova, Tetrahedron, 2010, 66, 9945.

    CAS  Article  Google Scholar 

  4. 4.

    F. Bellina, R. Rossi, Curr. Org. Chem., 2004, 8, 1089.

    CAS  Article  Google Scholar 

  5. 5.

    A. A. Avetisyan, M. T. Dangyan, Russ. Chem. Rev., 1977, 46, 643.

    Article  Google Scholar 

  6. 6.

    D. W. Knight, Contemp. Org. Synth., 1994, 1, 287.

    CAS  Article  Google Scholar 

  7. 7.

    R. Rossi, M. Lessi, C. Manzini, G. Marianetti, F. Bellina, Curr. Org. Chem., 2017, 21, 964.

    CAS  Article  Google Scholar 

  8. 8.

    M. V. N. De Souza, Mini-Rev. Org. Chem., 2005, 2, 139.

    CAS  Article  Google Scholar 

  9. 9.

    S. Kumar, R. Garg, A. Kabra, World J. Pharm. Res., 2013, 1, 83.

    Google Scholar 

  10. 10.

    A. R. Kurbangalieva, N. F. Devyatova, A. V. Bogdanov, E. A. Berdnikov, T. G. Mannafov, D. B. Krivolapov, I. A. Litvinov, G. A. Chmutova, Phosphorus, Sulfur Silicon Relat. Elem., 2007, 182, 607.

    CAS  Article  Google Scholar 

  11. 11.

    N. F. Devyatova, L. S. Kosolapova, A. R. Kurbangalieva, E. A. Berdnikov, O. A. Lodochnikova, I. A. Litvinov, G. A. Chmutova, Russ. J. Org. Chem., 2008, 44, 1225.

    CAS  Article  Google Scholar 

  12. 12.

    A. R. Kurbangalieva, N. F. Devyatova, L. S. Kosolapova, O. A. Lodochnikova, E. A. Berdnikov, I. A. Litvinov, G. A. Chmutova, Russ. Chem. Bull., 2009, 58, 126.

    CAS  Article  Google Scholar 

  13. 13.

    L. T. Hoang, A. R. Kurbangalieva, A. S. Ezhova, E. A. Berdnikov, G. A. Chmutova, Butlerov. Soobshch. [Butlerov Commun.] 2015, 42, 33 (in Russian).

    Google Scholar 

  14. 14.

    A. R. Kurbangalieva, L. T. Hoang, O. A. Lodochnikova, M. Yu. Kuzmicheva, A. R. Pradipta, K. Tanaka, G. A. Chmutova, Russ. Chem. Bull., 2016, 65, 1278.

    CAS  Article  Google Scholar 

  15. 15.

    L. Z. Latypova, E. S. Saigitbatalova, D. R. Chulakova, O. A. Lodochnikova, A. R. Kurbangalieva, E. A. Berdnikov, G. A. Chmutova, Russ. J. Org. Chem., 2014, 50, 521.

    CAS  Article  Google Scholar 

  16. 16.

    L. Z. Latypova, E. Sh. Saigitbatalova, A. R. Kurbangalieva, O. A. Lodochnikova, G. A. Chmutova, Butlerov. Soobshch. [Butlerov Commun.], 2016, 45, 89 (in Russian).

    Google Scholar 

  17. 17.

    I. S. Sharafutdinov, E. Y. Trizna, D. R. Baidamshina, M. N. Ryzhikova, R. R. Sibgatullina, A. M. Khabibrakhmanova, L. Z. Latypova, A. R. Kurbangalieva, E. V. Rozhina, M. Klinger-Strobel, R. F. Fakhrullin, M. W. Pletz, M. I. Bogachev, A. R. Kayumov, O. Makarewicz, Front. Microbiol., 2017, 8, 2246.

    Article  Google Scholar 

  18. 18.

    N. F. Devyatova, A. R. Kurbangalieva, V. V. Yanilkin, G. A. Chmutova, Russ. Chem. Bull., 2009, 58, 908.

    CAS  Article  Google Scholar 

  19. 19.

    J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Gramlich, C. B. Knobler, P. Seiler, F. Diederich, Helv. Chim. Acta, 1995, 78, 13.

    CAS  Article  Google Scholar 

  20. 20.

    B. A. Arbuzov, E. N. Klimovitskii, M. B. Timirbaev, Chem. Heterocycl. Compd., 1980, 16, 14.

    Article  Google Scholar 

  21. 21.

    R. T. LaLonde, H. Perakyla, G. P. Cook, C. W. Dence, Environ. Toxicol. Chem., 1990, 9, 687.

    CAS  Google Scholar 

  22. 22.

    J. Zhang, P. G. Blazecka, D. Belmont, J. G. Davidson, Org. Lett., 2002, 4, 4559.

    CAS  Article  Google Scholar 

  23. 23.

    O. A. Lodochnikova, L. Z. Latypova, R. M. Khakimov, A. R. Kurbangalieva, D. B. Krivolapov, I. A. Litvinov, Russ. J. Struct. Chem., 2013, 54, 213.

    CAS  Article  Google Scholar 

  24. 24.

    E. I. Ivanov, M. Ya. Fioshin, D. S. Gorbenko-Germanov, G. S. Solov´ev, Elektrokhimiya [Electrochemistry], 1990, 26, 503 (in Russian).

    CAS  Google Scholar 

  25. 25.

    L. Z. Latypova, V. V. Yanilkin, A. R. Kurbangalieva, E. A. Berdnikov, G. A. Chmutova, Russ. Chem. Bull., 2012, 61, 568.

    CAS  Article  Google Scholar 

  26. 26.

    A. Weissberger, E. S. Proskauer, J. A. Riddic, E. E. Toops, Organic Solvents. Physical Properties and Methods of Purifications, Interscience Publishers, Inc., New York–London, 1955.

    Google Scholar 

  27. 27.

    O. N. Vlasov, B. N. Rybakov, L. M. Kogan, Zh. Prikl. Khim. [Russ. J. Appl. Chem.], 1968, 41, 373 (in Russian).

    CAS  Google Scholar 

  28. 28.

    T. I. Bobrova, S. D. Volodkovich, S. S. Kukalenko, Zh. Obshch. Khim. [Russ. J. Gen. Chem.], 1975, 45, 1123 (in Russian).aaaaa

    CAS  Google Scholar 

  29. 29.

    A. Ghorbani-Choghamarani, M. Nikoorazm, H. Goud arziafshar, A. Shokr, H. Almasi, J. Chem. Sci., 2011, 123, 453.

    CAS  Article  Google Scholar 

  30. 30.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Version 7.0 (Revision A.2), Gaussian, Inc., Wallingford (CT), 2009.

    Google Scholar 

  31. 31.

    J. Tomasi, M. Persico, Chem. Rev., 1994, 94, 2027.

    CAS  Article  Google Scholar 

  32. 32.

    E. A. Berdnikov, Doctoral Thesis (Chemistry), Kazan State Univ., Kazan, 1988, 442 pp. (in Russian).

    Google Scholar 

  33. 33.

    Ch. K. Mann, K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, Inc., New York, 1970, 560 pp.

    Google Scholar 

  34. 34.

    Yu. Yu. Lurie, Spravochnik po analiticheskoi khimii [Handbook on Analytic Chemistry], Khimiya, Moscow, 1989, 448 pp. (in Russian).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Z. Latypova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0313–0327, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latypova, L.Z., Chmutova, G.A., Kurbangalieva, A.R. et al. Mechanism of electrochemical reduction of 5-thio derivatives of 2(5H)-furanone. Russ Chem Bull 68, 313–327 (2019). https://doi.org/10.1007/s11172-019-2387-5

Download citation

Key words

  • 2(5H)-furanones
  • thioethers
  • sulfones
  • mucochloric acid
  • electrochemical reduction
  • voltammetry
  • quantum chemical calculations