Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries

Abstract

Li-rich layered oxides Li1.2Mn0.54Ni0.13Co0.13O2 were synthesized by modified Pechini method using various compositions of the reaction mixture. Difference in the electrochemical performance of cathodes on their basis is explained by different morphology and microstructure of the materials. The porous hierarchical structure favors a better electrochemical performance. The presence of defects, including crystal twins, in the samples is considered to be a major reason that leads to their poor cyclability and rate capability.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. L. Kulova, A. M. Skundin, Russ. Chem. Bull., 2017, 66, 1329.

    CAS  Article  Google Scholar 

  2. 2.

    S. Wang, Z. Zhang, A. Deb, L. Yang, S. Hirano, Ind. Eng. Chem. Res., 2014, 53, 19525.

    CAS  Google Scholar 

  3. 3.

    S. A. Novikova, A. B. Yaroslavtsev, Russ. Chem. Bull., 2017, 66, 1336.

    CAS  Google Scholar 

  4. 4.

    M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Chem., 2005, 15, 2257.

    CAS  Google Scholar 

  5. 5.

    M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci., 2015, 5, 7854.

    Google Scholar 

  6. 6.

    N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Angew. Chem., Int. Ed., 2012, 51, 9994.

    CAS  Google Scholar 

  7. 7.

    E. M. Erickson, F. Schipper, T. R. Penki, C. Erk, J.-Y. Shin, F. F. Chesneau, B. Markovsky, D. Aurbach, J. Electrochem. Soc., 2017, 164, A6341.

    CAS  Google Scholar 

  8. 8.

    T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, J. Mater. Chem., 2011, 21, 10179.

    CAS  Google Scholar 

  9. 9.

    S. Hy, H. Liu, M. Zhang, D. Qian, B.-J. Hwang, Y. S. Meng, Energy Environ. Sci., 2016, 9, 1931.

    CAS  Google Scholar 

  10. 10.

    P. K. Nayak, E. M. Erikson, F. Shipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Adv. Energy Mater., 2018, 8, 1702397.

    Google Scholar 

  11. 11.

    P. Rozier, J. M. Tarascon, J. Electrochem. Soc., 2015, 162, A2490.

    CAS  Google Scholar 

  12. 12.

    X. Yu, Y. Lyu, L. Gu, H. M. Wu, S.-M. Bak, Y. N. Zhou, K. Amine, S. N. Ehrlich, H. Li, K.-W. Nam, X.-Q. Yang, Adv. Energy Mater., 2014, 4, 1300950.

    Google Scholar 

  13. 13.

    J.-S. Kim, C. S. Johnson, M. M. Thackeray, Electrochem. Commun., 2002, 4, 205.

    CAS  Google Scholar 

  14. 14.

    A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater., 2016, 6, 1501010.

    Google Scholar 

  15. 15.

    D. L. Ye, L. Z. Wang,Mater. Technol.: Adv. Funct. Mater., 2014, 29, A59.

    CAS  Google Scholar 

  16. 16.

    M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, J. Mater. Chem., 2007, 17, 3112.

    CAS  Google Scholar 

  17. 17.

    A. D. Robertson, P. G. Bruce, Chem. Mater., 2003, 15, 1984.

    CAS  Google Scholar 

  18. 18.

    A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 8694.

    CAS  PubMed  Google Scholar 

  19. 19.

    C. R. Fell, D. Qian, K. J. Carroll, M. F. Chi, J. L. Jones, Y. S. Meng, Chem. Mater., 2013, 25, 1621.

    CAS  Google Scholar 

  20. 20.

    M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J.-M. Tarascon, Nature Mater., 2013, 12, 827.

    CAS  Google Scholar 

  21. 21.

    G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.-M. Tarascon, Chem. Mater., 2017, 29, 9714.

    CAS  Google Scholar 

  22. 22.

    E. McCalla, A. M. Abakumov, M. Saubanère, D. Foix, E. J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novák, G. Van Tendeloo, R. Dominko, J.-M. Tarascon, Science, 2015, 350, 1516.

    CAS  PubMed  Google Scholar 

  23. 23.

    J. Zheng, P. Xu, M. Gu, J. Xiao, N. D. Browning, P. Yan, C. Wang, J. G. Zhang, Chem. Mater., 2015, 27, 1381.

    CAS  Google Scholar 

  24. 24.

    A. K. Shukla, Q. M. Ramasse, C. Ophus, H. Duncan, F. Hage, G. Chen, Nature Comm., 2015, 6, 8711.

    CAS  Google Scholar 

  25. 25.

    M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, S. A. Hackney, Electrochem. Commun., 2006, 8, 1531.

    CAS  Google Scholar 

  26. 26.

    H. Koga, L. Crogunnec, P. Mannessiez, M. Menetrier, F. Weill, L. Bourgeois, M. Duttine, E. Suard, C. Delmas, J. Phys. Chem. C, 2012, 116, 13497.

    CAS  Google Scholar 

  27. 27.

    H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, Phys. Chem. Chem. Phys., 2012, 14, 6584.

    PubMed  Google Scholar 

  28. 28.

    Y. Song, X. Zhao, C. Wang, H. Bi, J. Zhang, S. Li, M. Wang, R. Che, J. Mater. Chem. A, 2017, 5, 11214.

    CAS  Google Scholar 

  29. 29.

    J. R. Croy, M. Balasubramanian, K. G. Gallagher, A. K. Burrell, Acc. Chem. Res., 2015, 48, 2813.

    CAS  PubMed  Google Scholar 

  30. 30.

    S. Kim, M. Aykol, V. I. Hegde, Z. Lu, S. Kirklin, J. R. Croy, M. M. Thackeray, C. Wolverton, Energy Environ. Sci., 2017, 10, 2201.

    CAS  Google Scholar 

  31. 31.

    E. V. Makhonina, L. S. Maslennikova, V. V. Volkov, A. E. Medvedeva, A. M. Rumyantsev, Yu. M. Koshtyal, M. Yu. Maximov, V. S. Pervov, I. L. Eremenko, Appl. Surf. Sci., 2018, 474, 25; DOI.org/10.1016/j.apsusc.2018.07.159.

    Google Scholar 

  32. 32.

    L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, Yu. M. Koshtyal, V. S. Pervov, I. L. Eremenko, Russ. J. Inorg. Chem., 2018, 63, 1534.

    CAS  Google Scholar 

  33. 33.

    W. Liu, G. C. Farrington, F. Chaput, B. Dunn, J. Electrochem. Soc., 1996, 143, 879.

    CAS  Google Scholar 

  34. 34.

    Bruker TOPAS 5 User Manual, Bruker AXS GmbH, Karlsruhe, 2015.

  35. 35.

    G. K. Williamson, W. M. Hall, Acta Metall., 1953, 1, 22.

    CAS  Google Scholar 

  36. 36.

    A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Solid State Ionics, 2010, 180, 1652.

    CAS  Google Scholar 

  37. 37.

    A. J. Smith, J. C. Burns, J. R. Dahn, ESL, 2011, 14, A39.

    CAS  Google Scholar 

  38. 38.

    Z. Chen, J. Wang, D. Chao, T. Baikie, L. Bai, S. Chen, Y. Zhao, T. C. Sum, J. Lin, Z. Shen, Sci. Rep., 2016, 6, 25771.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    D. Ma, Y. Li, P. Zhang, A. J. Cooper, A. M. Abdelkader, X. Ren, L. Deng, J. Power Sources, 2016, 311, 35.

    CAS  Google Scholar 

  40. 40.

    I. Bloom, L. Trahey, A. Abouimrane, I. Belharouak, X. Zhang, Q. Wu, W. Lu, D. P. Abrahama, M. Bettge, J. W. Elam, X. Meng, A. K. Burrell, C. Ban, R. Tenent, J. Nanda, N. Dudney, J. Power Sources, 2014, 249, 509.

    CAS  Google Scholar 

  41. 41.

    F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Nat. Commun., 2014, 5, 3529.

    PubMed  Google Scholar 

  42. 42.

    N. Yabuuchi, K. Yoshii, C.-T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc., 2011, 133, 4404.

    CAS  Google Scholar 

  43. 43.

    J. Cabana, B. J. Kwon, L. Hu, Acc. Chem. Res., 2018, 51, 299.

    CAS  PubMed  Google Scholar 

  44. 44.

    S. S. Choi, H. S. Lim, J. Power Sources, 2002, 111, 130.

    CAS  Google Scholar 

  45. 45.

    V. V. Volkov, J. Van Landuyt, S. Amelinckx, V. S. Pervov, E. V. Makhonina, J. Solid State Chem., 1998, 135, 235.

    CAS  Google Scholar 

  46. 46.

    F. Fu, Y. Yao, H. Wang, G.-L. Xu, K. Amine, S.-G. Sund, M. Shao, Nano Energy, 2017, 35, 370.

    CAS  Google Scholar 

  47. 47.

    R. Yu, X. Zhang, T. Liu, X. Xu, Y. Huang, G. Wang, X. Wang, H. Shu, X. Yang, ACS Sustainable Chem. Eng., 2017, 5, 8970.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Е. V. Makhonina.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0301–0312, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhonina, Е.V., Pechen, L.S., Volkov, V.V. et al. Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries. Russ Chem Bull 68, 301–312 (2019). https://doi.org/10.1007/s11172-019-2386-6

Download citation

Key words

  • Li-rich oxides cathode materials
  • Li-ion batteries
  • Pechini process
  • electron microdiffraction
  • microstructure