Mixed systems based on aminated and sulfonated silica nanoparticles: synthesis, self-assembly, and selective adsorption of certain biopolymers

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hybrid aminated and sulfonated nanoparticles were synthesized by surface modification of silica nanopowder with 3-aminopropyltriethoxysilane and 1,3-propanesultone, respectively. The developed protocols for the synthesis of three types of "buffer" mixed submicron particles with corresponding ζ-potentials (–21.4±1.3, 4.7±0.4, 12.4±0.8) were based on various methods of nanoprecipitation of synthesized silica nanoparticles modified by amino- and sulfonate groups, and on various conditions of these precepitation (solvent, temperature). Hybrid SiO2 particles, as well as self-assembling associates based on sulfonated and aminated particles, were examined in extraction of biologically important macromolecules. It was established that the efficiency of adsorption of calf thymus DNA increased with increasing zeta potentials of the modified silica particles studied. The interaction of the studied model proteins (bovine serum albumin and lysozyme) with the synthesized silica nanoparticles modified by sulfonate groups increased as the pH of the medium decreased.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. K. Sharma, S. Sharma, S. Dutta, R. Zboril, B. D. Gawande, Green Chem., 2015, 17, 3207.

    CAS  Article  Google Scholar 

  2. 2.

    R. V. Ziatdinova, N. A. Losev, I. S. Terent´ev, A. V. Gerasimov, L. S. Yakimova, V. G. Evtugyn, I. I. Stoikov, Russ. J. Gen. Chem., 2017, 87, 1969.

    CAS  Article  Google Scholar 

  3. 3.

    L. S. Yakimova, O. A. Mostovaya, D. A. Bizyaev, A. A. Bukharaev, I. S. Antipin, A. I. Konovalov, I. Zharov, I. I. Stoikov, Silicon, 2011, 3, 5.

    Article  Google Scholar 

  4. 4.

    I. I. Stoikov, A. A. Vavilova, R. D. Badaeva, V. V. Gorbachuk, V. G. Evtugyn, R. R. Sitdikov, L. S. Yakimova, I. Zharov, J. Nanopart. Res., 2013, 15, 1617.

    Article  Google Scholar 

  5. 5.

    G. V. Lisichkin, A. Yu. Fadeev, A. A. Serdan, P. N. Nesterenko, P. G. Mingalev, D. B. Furman, Khimiya privitykh poverkhostnykh soedinenii [Chemistry of Anchored Surface Compounds], Fizmatlit, Moscow, 2003, 592 pp. (in Russian).

    Google Scholar 

  6. 6.

    A. A. Vertegel, R. W. Siegel, J. S. Dordick, Langmuir, 2004, 20, 6800.

    CAS  Article  Google Scholar 

  7. 7.

    L. S. Yakimova, R. V. Ziatdinova, V. G. Evtugyn, I. Kh. Rizvanov, I. I. Stoikov, Russ. Chem. Bull., 2016, 65, 1053.

    CAS  Article  Google Scholar 

  8. 8.

    V. A. Burilov, A. T. Nurmukhametova, R. N. Belov, D. A. Mironova, V. V. Vorob´ev, Yu. N. Osin, I. S. Antipin, Russ. Chem. Bull., 2018, 67, 461.

    CAS  Article  Google Scholar 

  9. 9.

    A. L. Khan, C. Klaysom, A. Gahlaut, X. Li, I. F. Vankelecom, J. Mater. Chem., 2012, 22, 20057.

    CAS  Article  Google Scholar 

  10. 10.

    V. A. Burilov, A. T. Latypova, R. A. Safiullin, I. S. Antipin, Russ. J. Gen. Chem., 2016, 86, 661.

    CAS  Article  Google Scholar 

  11. 11.

    B. Bhushan, Springer Handbook of Nanotechnology, Springer-Verlag, GmbH, Germany, 2017, 1704 pp.

    Google Scholar 

  12. 12.

    L. Zhao, Y. Zhao, Y. Han, Langmuir, 2010, 26, 11784.

    CAS  Article  Google Scholar 

  13. 13.

    S. Xu, S. Hartvickson, J. X. Zhao, J. Colloid Interface Sci., 2012, 134, 15790.

    Google Scholar 

  14. 14.

    A. Milogroom, M. Intrator, K. Madhavan, L. Mazzaro, R. Shandas, B. Liu, D. Park, Colloids and Surfaces B: Biointerfaces, 2014, 116, 652.

    Article  Google Scholar 

  15. 15.

    S. H. Wu, Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang, C.Y. Mou, Chem Bio Chem, 2008, 9, 53.

    CAS  Article  Google Scholar 

  16. 16.

    J.E. Smith, L. Wang, W. Tan, Trends Anal. Chem., 2006, 25, 848.

    CAS  Article  Google Scholar 

  17. 17.

    Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches, A. Tropsha, B. Yan, Chem. Rev., 2014, 114, 7740.

    CAS  Article  Google Scholar 

  18. 18.

    P. Aggarwal, J. B. Hall, C. B. McLeland, M. A. Dobrovolskaia, S. E. McNeil, Adv. Drug Delivery Rev., 2009, 61, 428.

    CAS  Article  Google Scholar 

  19. 19.

    Z. G. Estephan, J. A. Jaber, J. B. Schlenoff, Langmuir, 2010, 26, 16884.

    CAS  Article  Google Scholar 

  20. 20.

    K. D. Hartlen, A. P. T. Athanasopoulos, V. Kitaev, Langmuir, 2008, 24, 1714.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Stoikov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0262–0269, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakimova, L.S., Nugmanova, A.R., Evtugyn, V.G. et al. Mixed systems based on aminated and sulfonated silica nanoparticles: synthesis, self-assembly, and selective adsorption of certain biopolymers. Russ Chem Bull 68, 262–269 (2019). https://doi.org/10.1007/s11172-019-2381-y

Download citation

Key words

  • silica
  • surface modification
  • self-assembly
  • self-organization
  • calf thymus DNA
  • bovine serum albumin
  • lyzozyme