Application of density functional theory and optical spectroscopy for the prediction of the photophysical properties of Р-pyridylphospholanes

Abstract

The spatial and electronic structure of a series of pyridyl-containing phospholanes, which are potential ligands for the synthesis of luminescent transition metal complexes, was studied using Raman, IR and UV spectroscopy in combination with quantum chemical calculations. A series of model 1-(pyridin-2-yl)phospholane derivatives with various substituents in the pyridyl fragment was considered. Correlations between electronic structure, spectral characteristics, as well as position and nature of substituents were revealed. The obtained results can be used for rational design of complexes with specified optical properties.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. M. Zink, M. Bächle, T. Baumann, M. Nieger, M. Kühn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Bräse, Inorg. Chem., 2013, 52, 2292.

    CAS  Article  Google Scholar 

  2. 2.

    Z. Liu, P. I. Djurovich, M. T. Whited, M. E. Thompson, Inorg. Chem., 2012, 51, 230–236.

    CAS  Article  Google Scholar 

  3. 3.

    K. Chen, J. Shearer, V. J. Catalano, Inorg. Chem., 2015, 54, 6245–6256.

    CAS  Article  Google Scholar 

  4. 4.

    E. I. Musina, A. V. Shamsieva, I. D. Strelnik, T. P. Gerasimova, D. B. Krivolapov, I. E. Kolesnikov, E. V. Grachova, S. P. Tunik, C. Bannwarth, S. Grimme, S. A. Katsyuba, A. A. Karasik, O. G. Sinyashin, Dalton Trans., 2016, 45, 2250–2260.

    CAS  Article  Google Scholar 

  5. 5.

    E. E. Zvereva, A. R. Shagidullin, S. A. Katsyuba, J. Phys. Chem. A, 2011, 115, 63–69.

    CAS  Article  Google Scholar 

  6. 6.

    S. A. Katsyuba, E. E. Zvereva, T. I. Burganov, J. Phys. Chem. A, 2013, 117, 6664–6670.

    CAS  Article  Google Scholar 

  7. 7.

    E. Zvereva, S. Grimme, S. Katsyuba, T. Burganov, A. Zagidullin, V. Milyukov, O. Sinyashin, J. Phys. Chem A, 2013, 117, 6827–6834.

    CAS  Article  Google Scholar 

  8. 8.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. Peralta, J. E. F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

    Google Scholar 

  9. 9.

    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    CAS  Article  Google Scholar 

  10. 10.

    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    CAS  Article  Google Scholar 

  11. 11.

    W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–2261.

    CAS  Article  Google Scholar 

  12. 12.

    P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213–222.

    CAS  Article  Google Scholar 

  13. 13.

    T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294–301.

    CAS  Article  Google Scholar 

  14. 14.

    M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.

    CAS  Article  Google Scholar 

  15. 15.

    V. A. Sipachev, J. Mol. Structure., 2001, 567–568, 67–72.

    Article  Google Scholar 

  16. 16.

    V. A. Sipachev, Struct. Chem., 2000, 11, 167–172.

    CAS  Article  Google Scholar 

  17. 17.

    J. Baker, A. Jarzecki, P. Pulay, J. Phys. Chem. A, 1998, 102, 1412–1424.

    CAS  Article  Google Scholar 

  18. 18.

    S.A. Katsyuba, J. Grunenberg, R. Schmutzler, J. Mol. Struct., 2001, 559, 315–320.

    CAS  Article  Google Scholar 

  19. 19.

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    CAS  Article  Google Scholar 

  20. 20.

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396.

    CAS  Article  Google Scholar 

  21. 21.

    F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143.

    CAS  Article  Google Scholar 

  22. 22.

    C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. P. Gerasimova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0254–0261, February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerasimova, T.P., Shamsieva, A.V., Strelnik, I.D. et al. Application of density functional theory and optical spectroscopy for the prediction of the photophysical properties of Р-pyridylphospholanes. Russ Chem Bull 68, 254–261 (2019). https://doi.org/10.1007/s11172-019-2380-z

Download citation

Key words

  • quantum-chemical computations
  • vibrational spectroscopy
  • pyridyl-containing phospholanes