Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1814–1822 | Cite as

Optimization of structural and energy characteristics of adsorbents for methane storage

  • I. E. Men’shchikovEmail author
  • A. A. Fomkin
  • A. V. Shkolin
  • V. Yu. Yakovlev
  • E. V. Khozina


Using numerical and analytical methods, a model for microporous carbon adsorbents with slit-shaped pores of different widths was developed. Such pores are formed during activation procedure by the removal of the hexagonal carbon layers burnt out in a graphite-like crystallites. Dubinin’s theory of volume filling of micropores was used to calculate methane adsorption equilibria on these model adsorbents. Isobaric dependences of methane adsorption on pore width, specific micropore volumes, and the specific surface were plotted in the range of pressures from 1 to 10 MPa. It was found that the isobaric adsorption curves had a maximum the position of which depends on both the structural-energy characteristics of the adsorbent and thermodynamic conditions chosen to operate the adsorption system. As pressure increased, the maximum of adsorption shifts to the porous systems with wider pores and larger micropore volume.

Key words

methane storage adsorption active carbon micropore volume characteristic adsorption energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Burchell, M. Rogers, SAE Tech. Pap. Ser., 2000, 2000-01-2205.Google Scholar
  2. 2.
    M. S. Balathanigaimani, H.-C. Kang, W.-G. Shim, C. Kim, J.-W. Lee, H. Moon, Korean J. Chem. Eng., 2006, 23,663.CrossRefGoogle Scholar
  3. 3.
    A. Policicchio, E. Maccallini, R. G. Agostino, F. Ciuchi, A. Aloise, G. Giordano, Fuel, 2013, 4,813.CrossRefGoogle Scholar
  4. 4.
    F. Yan-Yan, Y. Wen, C. Wei, Chin. Phys. B., 2014, 23, 108201-1–8.CrossRefGoogle Scholar
  5. 5.
    L. Giraldo, J. C. Moreno-Piraján, Mater. Sci. Appl., 2011, 2,331.Google Scholar
  6. 6.
    M. S. Balathanigaimani, W.-G. Shim, J.-W. Lee, H. Moon, Micropor. Mesopor. Mater., 2009, 119,47.CrossRefGoogle Scholar
  7. 7.
    R. B. M. Rios, F. W. Silva, A. E. B. Torres, D. C. S. Azevedo, Jr. C. L. Cavalcante, Adsorption, 2009, 15,271.CrossRefGoogle Scholar
  8. 8.
    I. E. Men´shchikov, A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, E. M. Strizhenov, E. V. Khozina, Adsorption, 2017, 23,327.CrossRefGoogle Scholar
  9. 9.
    A. A. Fomkin, Adsorption, 2005, 11,425.CrossRefGoogle Scholar
  10. 10.
    Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, T. Yildirim, J. Am. Chem. Soc., 2013, 135, 11887.CrossRefGoogle Scholar
  11. 11.
    R. L. Martin, M. N. Shahrak, J. A. Swisher, C. M. Simon, J. P. Sculley, H. C. Zhou, B. Smit, M. Haranczyk, J. Phys. Chem. C, 2013, 117, 20037.CrossRefGoogle Scholar
  12. 12.
    H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875.CrossRefGoogle Scholar
  13. 13.
    J. L. Mendoza-Cortes, T. A. Pascal, W. A. Goddard, J. Phys. Chem. A, 2011, 115, 13852.CrossRefGoogle Scholar
  14. 14.
    D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, D.F. Quinn, Carbon, 2002, 40,989.CrossRefGoogle Scholar
  15. 15.
    A. A. García Blancoa, J. C. Alexandre de Oliveira, R. López, J. C. Moreno-Piraján, L. Giraldo, G. Zgrablich, K. Sapag, Colloids Surf. A: Physicochem. Eng. Aspects, 2010, 357,74.CrossRefGoogle Scholar
  16. 16.
    A. Feaver, G. Cao, Lett. Ed. Carbon, 2006, 44,590.CrossRefGoogle Scholar
  17. 17.
    X. Shao, W. Wang, X. Zhang, Carbon, 2007, 45,188.CrossRefGoogle Scholar
  18. 18.
    A. Arami-Niya, W. M. A. W. Daud, F. S. Mjalli, F. Abnisa, M. S. Shafeeyan, Chem. Eng. Res. Des., 2012, 90,776.CrossRefGoogle Scholar
  19. 19.
    M. Bastos-Neto, D. V. Canabrava, A. E. B. Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, D. C. S. Azevedo, C. L. Cavalcante, Jr. Appl. Surf. Sci., 2007, 253, 5721.CrossRefGoogle Scholar
  20. 20.
    Y. Ihm, V. R. Cooper, N. C. Gallego, C. I. Contescu, J. R. Morris, J. Chem. Theory Comput., 2014, 10,1.CrossRefGoogle Scholar
  21. 21.
    S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London–New York, 1982, 303 pp.Google Scholar
  22. 22.
    M. M. Dubinin, Prog. Surf.Memb.Sci., 1975, 9, 1–70.CrossRefGoogle Scholar
  23. 23.
    F. Rodríguez-Reinoso, C. Almansa, M. Molina-Sabio, J. Phys. Chem. B, 2005, 109, 20227.CrossRefGoogle Scholar
  24. 24.
    H. Tanaka, M. El-Merraoui, W. A. Steele, K. Kaneko, Chem. Phys. Lett., 2002, 352,334.CrossRefGoogle Scholar
  25. 25.
    Z. Tan, K. E. Gubbins, J. Phys. Chem., 1990, 94, 6061.CrossRefGoogle Scholar
  26. 26.
    K. R. Matranga, A. L. Myers, E. D. Glandt, Chem. Eng. Sci., 1992, 47, 1569.CrossRefGoogle Scholar
  27. 27.
    S. M. P. Lucena, V. A. Gomes, D.V. Goncalves, P. G. M. Mileo, P.F.G. Silvino, Carbon, 2013, 61,624.CrossRefGoogle Scholar
  28. 28.
    P. Kowalczyk, H. Tanaka, K. Kaneko, A.P. Terzyk, D. D. Do, Langmuir, 2005, 21, 5639.CrossRefGoogle Scholar
  29. 29.
    K. M. Anuchin, A. A. Fomkin, A. P. Korotych, A. M. Tolmachev, Prot. Met. Phys. Chem. Surf., 2014, 50,173.CrossRefGoogle Scholar
  30. 30.
    Z. Song, A. Nambo, K. L. Tate, A. Bao, M. Zhu, J. B. Jasinski, S. J. Zhou, H. S. Meyer, M. A. Carreon, S. Li, M. Yu, Nano Lett., 2016,16, 3309.CrossRefGoogle Scholar
  31. 31.
    MOVE: Methane Opportunities for Vehicular Energy, Advanced Research Projects Agency–Energy, U.S. Department of Energy, Washington, DC, 2012; (accessed Dec 2013).
  32. 32.
    K. V. Kumar, K. Preuss, M. M. Titirici, F. Rodríguez-Reinoso, Chem. Rev., 2017, 117, 1796.CrossRefGoogle Scholar
  33. 33.
    E. M. Strizhenov, A. V. Shkolin, A. A. Fomkin, A. A. Pribylov, A. A. Zherdev, I. A. Smirnov, Prot. Met. Phys. Chem. Surf. (Int. Ed.), 2013, 49,521.CrossRefGoogle Scholar
  34. 34.
    H. Wang, J. Getzschmann, I. Senkovska, S. Kaskel, Micropor. Mesopor. Mat., 2008, 116,653.CrossRefGoogle Scholar
  35. 35.
    I. Senkovska, S. Kaskel, Micropor. Mesopor. Mat., 2008, 112,108.CrossRefGoogle Scholar
  36. 36.
    M. M. Dubinin, G. M. Plavnik, Carbon, 1968, 6,183.CrossRefGoogle Scholar
  37. 37.
    P. B. Hirsch, Proc. Roy. Soc. A, 1954, 226,143.CrossRefGoogle Scholar
  38. 38.
    M. M. Dubinin, in Uglerodnye adsorbenty i ikh primenenie v promyshlennosti [Carbon Adsorbents and Their Industrial Application], Nauka, Moscow, 1983, p. 100 (in Russian).Google Scholar
  39. 39.
    G. M. Plavnik, M. M. Dubinin, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, 15,597.CrossRefGoogle Scholar
  40. 40.
    V. B. Fenelov, Poristyi uglerod [Porous Carbon], Institut Katalyza SB RAS, Novosibirsk, 1995, 518 pp. (in Russian).Google Scholar
  41. 41.
    I. A. Tarkovskaya, Okislenyi ugol´ [Oxidized Coal], Naukova dumka, Kiev, 1981, 200 pp. (in Russian).Google Scholar
  42. 42.
    B. K. Vainshtein, V. M. Fridkin, V. L. Indenbom, in Modern Crystallography, Eds B. K. Vainshtein, A. A. Chernov, L. A. Shuvalov, Springer-Verlag, Berlin, 1995, p.82.Google Scholar
  43. 43.
    J. C. Slater, J. Chem. Phys., 1964, 41, 3199.CrossRefGoogle Scholar
  44. 44.
    M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051.CrossRefGoogle Scholar
  45. 45.
    I. E. Men´shchikov, A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, E. M. Strizhenov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2015, 51,493.CrossRefGoogle Scholar
  46. 46.
    J. Alcaniz-Monge, D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, Micropor. Mesopor. Mat., 2009, 124,110.CrossRefGoogle Scholar
  47. 47.
    A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, I. E. Men´-shchikov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2016, 52,762.CrossRefGoogle Scholar
  48. 48.
    A. V. Shkolin, A. A. Fomkin, A. Yu. Tsivadze, K. M. Anuchin, I. E. Men´shchikov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2016, 52,955.CrossRefGoogle Scholar
  49. 49.
    E. M. Strizhenov, A. A. Fomkin, A. A. Zherdev, A.A. Pribylov, Prot. Met. Phys. Chem. Surf., 2012, 48,614.CrossRefGoogle Scholar
  50. 50.
    A. V. Shkolin, A. A. Fomkin, V. A. Sinitsyn, Colloid J., 2008, 70, 796.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. E. Men’shchikov
    • 1
    Email author
  • A. A. Fomkin
    • 1
  • A. V. Shkolin
    • 1
  • V. Yu. Yakovlev
    • 1
  • E. V. Khozina
    • 1
  1. 1.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations