Skip to main content
Log in

Stabilization of sialyl cation in axial conformation assisted by remote acyl groups

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Stereoselective synthesis of α-sialosides by the glycosylation reaction (sialylation) is an important task in carbohydrate chemistry. Using quantum chemical calculations, the conformations of the sialyl cation formed from the sialyl donor under conditions of sialylation reaction were studied. Although the "axial conformation" of sialyl cation itself is energetically unfavorable, it is possible to stabilize it through the participation of O- and N-acyl protective groups. The obtained results open the possibility to modulate the stereoselectivity of sialylation by directed variation of the nature of protective groups in the sialyl donor molecule. 2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, A. Varki, ACS Chem. Biol., 2010, 5, 163–176; DOI: 10.1021/cb900266r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Varki, Nature, 2007, 446, 1023–1029; DOI: 10.1038/nature05816.

    Article  CAS  Google Scholar 

  3. S. Sakarya, C. Göktürk, T. Öztürk, M. B. Ertugrul, FEMS Immunol. Med. Microbiol., 2010, 58, 330–335; DOI: 10.1111/j.1574-695X.2010.00650.x.

    Article  CAS  PubMed  Google Scholar 

  4. R. A. Medina, A. García-Sastre, Nat. Rev. Microbiol., 2011, 9, 590–603; DOI: 10.1038/nrmicro2613.

    Article  CAS  PubMed  Google Scholar 

  5. J. E. Stencel-Baerenwald, K. Reiss, D. M. Reiter, T. Stehle, T. S. Dermody, Nat. Rev. Microbiol., 2014, 12, 739–749; DOI: 10.1038/nrmicro3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Bull, M. A. Stoel, M. H. den Brok, G. J. Adema, Cancer Res., 2014, 74, 3199–3204; DOI: 10.1158/0008-5472.Can-14-0728.

    Article  CAS  PubMed  Google Scholar 

  7. O. M. T. Pearce, H. Läubli, Glycobiology, 2016, 26, 111–128; DOI: 10.1093/glycob/cwv097.

    Article  CAS  Google Scholar 

  8. H. Ando, Biosci. Biotechnol. Biochem., 2015, 79, 343–346; DOI: 10.1080/0 9168451.2014.990228.

    Article  CAS  PubMed  Google Scholar 

  9. C. Navuluri, D. Crich, in Glycochemical Synthesis: Strategies and App lications, Eds S.-C. Hung, M. M. L. Zulueta, John Wiley and Sons, Inc., Hoboken, 2016, p. 131–154.

  10. B. Sun, Curr. Org. Chem., 2016, 20, 1465–1476; DOI: 10.2174/138527282014160419234226.

    Article  CAS  Google Scholar 

  11. L. O. Kononov, N. N. Malysheva, E. G. Kononova, O. G. Garkusha, Russ. Chem. Bull., 2006, 55, 1311–1313; DOI: 10.1007/s11172-006-0419-4.

    Article  CAS  Google Scholar 

  12. L. O. Kononov, N. N. Malysheva, E. G. Kononova, A. V. Orlova, Eur. J. Org. Chem., 2008, 3251–3255; DOI: 10.1002/ejoc.200800324.

    Google Scholar 

  13. L. O. Kononov, N. N. Malysheva, A. V. Orlova, Eur. J. Org. Chem., 2009, 611–616; DOI: 10.1002/ejoc.200801017.

    Google Scholar 

  14. L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zinin, T. V. Laptinskaya, E. G. Kononova, N. G. Kolotyrkina, Eur. J. Org. Chem., 2012, 1926–1934; DOI: 10.1002/ej oc.201101613.

    Google Scholar 

  15. L. O. Kononov, in Advances in Chemistry Research, Ed. J. C. Taylor, Nova Science Publishers, Inc., Hauppauge, NY, 2013, p. 143–178; https://www.novapublishers.com/catalog/product_info.php?products_id=41681.

  16. H. M. Christensen, S. Oscarson, H. H. Jensen, Carbohydr. Res., 2015, 408, 51–95; DOI: 10.1016/j.carres.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  17. D. K. Ress, R. J. Linhardt, Curr. Org. Synth., 2004, 1, 31–46; DOI: 10.2174/1570179043485448.

    Article  CAS  Google Scholar 

  18. L. K. Mydock, A. V. Demchenko, Org. Biomol. Chem., 2010, 8, 497–510; DOI: 10.1039/b916088d.

    Article  CAS  PubMed  Google Scholar 

  19. H. Satoh, T. Nukada, Trends Glycosci. Glycotechnol., 2014, 26, 11–27; DOI: 10.4052/tigg.26.11.

    Article  CAS  Google Scholar 

  20. L. Bohé, D. Crich, Carbohydr. Res., 2015, 403, 48–59; DOI: 10.101 6/j.carres.2014.06.020.

    Article  CAS  PubMed  Google Scholar 

  21. L. Bohé, D. Crich, Nat. Chem., 2016, 8, 99–100; DOI: 10.1038/nchem.2436.

    Article  CAS  PubMed  Google Scholar 

  22. B. Hagen, S. van der Vorm, T. Hansen, G. A. van der Marel, J. D. C. Codée, in Selective Glycosylations: Synthetic Methods and Catalysts, Ed. C. S. Bennett, Wiley-VCH V erlag GmbH and Co. KGaA, Weinheim, 2017, p. 3–28.

  23. C. De Meo, C. E. Wallace, S. A. Geringer, Org. Lett., 2014, 16, 2676–2679; DOI: 10.1021/ol500917k.

    Article  CAS  PubMed  Google Scholar 

  24. H. D. Premathilake, C. P. Gobble, P. Pornsuriyasak, T. Hardimon, A. V. Demchenko, C. De Meo, Org. Lett., 2012, 14, 1126–1129; DOI: 10.1021/ol3000475.

    Article  CAS  PubMed  Google Scholar 

  25. S. Escopy, S. A. Geringer, C. De Meo, Org. Lett., 2017, 19, 2638–2641; DOI: 10.1021/acs.orglett.7b00976.

    Article  CAS  PubMed  Google Scholar 

  26. M. T. Yang, K. A. Woerpel, J. Org. Chem., 2009, 74, 545–553; DOI: 10.1021/jo8017846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. T. C. Walvoort, J. Dinkelaar, L. J. van den Bos, G. Lodder, H. S. Overkleeft, J. D. C. Codée, G. A. van der Marel, Carbohydr. Res., 2010, 345, 1252–1263; DOI: 10.1016/j. carres.2010.02.027.

    Article  CAS  PubMed  Google Scholar 

  28. A. Imamura, N. Matsuzawa, S. Sakai, T. Udagawa, S. Nakashima, H. Ando, H. Ishida, M. Kiso, J. Org. Chem., 2016, 81, 9086–9104; DOI: 10.1021/acs.joc.6b01685.

    Article  CAS  PubMed  Google Scholar 

  29. K. Furuhata, H. Ogura, Chem. Pharm. Bull., 1992, 40, 3197–3200; DOI: 10.1248/cpb.40.3197.

    Article  CAS  Google Scholar 

  30. K. H. Asressu, C. C. Wang, Carbohydr. Res., 2017, 453–454, 44–53; DOI: 10. 1016/j.carres.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  31. S. Sato, K. Furuhata, H. Ogura, Chem. Pharm. Bull., 1988, 36, 4678–4688; DOI: 10.1248/cpb.36.4678.

    Article  CAS  Google Scholar 

  32. N. Sugiyama, K. Sugai, N. Yamada, M. Goto, C. Ban, K. Furuhata, H. Takayanagi, H. Ogura, Chem. Pharm. Bull., 1988, 36, 1147–1152; DOI: 10.1248/cpb.36.1147.

    Article  CAS  Google Scholar 

  33. R. Colombo, M. Anastasia, P. Rota, P. Allevi, Chem. Commun., 2008, 5517–5519; DOI: 10.1039/b810447f.

    Google Scholar 

  34. P. Allevi, P. Rota, R. Scaringi, R. Colombo, M. Anastasia, J. Org. Chem., 2010, 75, 5542–5548; DOI: 10.1021/jo100732j.

    Article  CAS  PubMed  Google Scholar 

  35. K. S. Kim, D.-H. Suk, Top. Curr. Chem., 2011, 301, 109–140; DOI: 10.1007/128_2010_107.

    Article  CAS  PubMed  Google Scholar 

  36. J. Kalikanda, Z. Li, J. Org. Chem., 2011, 76, 5207–5218; DOI: 10.1021/jo1025157.

    Article  CAS  PubMed  Google Scholar 

  37. B. S. Komarova, N. E. Ustyuzhanina, Y. E. Tsvetkov, N. E. Nifantiev, in Modern Synt hetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates, Eds D. B. Werz, S. Vidal, Wil.

  38. D. Yao, Y. Liu, S. Yan, Y. Li, C. Hu, N. Ding, Chem. Commun., 2017, 53, 2986–2989; DOI: 10.1039/c7cc00274b.

    Article  CAS  Google Scholar 

  39. B. Yang, W. Z. Yang, S. Ramadan, X. F. Huang, Eur. J. Org. Chem., 2018, 1075–1096; DOI: 10.1002/ejoc. 201701579.

    Google Scholar 

  40. C. De Meo, M. N. Kamat, A. V. Demchenko, Eur. J. Org. Chem., 2005, 706–711; DOI: 10.1002/ejoc.200400616.

    Google Scholar 

  41. W. Huang, Y.-Y. Zhou, X.-L. Pan, X.-Y. Zhou, J.-C. Lei, D.-M. Liu, Y. Chu, J.-S. Yang, J. Am. Chem. Soc., 2018, 140, 3574–3582; DOI: 10.1021/jacs.7b09461.

    Article  CAS  PubMed  Google Scholar 

  42. D. Crich, W. Li, Org. Lett., 2006, 8, 959–962; DOI: 10.1021/ol060030s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158–6170; DOI: 10.1063/1.478522.

    Article  CAS  Google Scholar 

  44. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: 10.1063/1.3382344.

    Article  CAS  Google Scholar 

  45. T. H. Dunning, Jr., K. A. Peterso n, A. K. Wilson, J. Chem. Phys., 2001, 114, 9244–9253; DOI: 10.1063/1.1367373.

    Article  CAS  Google Scholar 

  46. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396; DOI: 10.1021/jp810292n.

    Article  CAS  Google Scholar 

  47. M. S. Gordon, M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First Forty Years, Eds C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Elsevier, Amsterdam, 2005, p. 1167–1189.

  48. M. Marianski, A. Supady, T. Ingram, M. Schneider, C. Baldauf, J. Chem. Theory Comput., 2016, 12, 6157–6168; DOI: 10.1021/acs.jctc.6b00876.

    Article  CAS  PubMed  Google Scholar 

  49. M. G. Medvedev, I. S. Bushmarinov, J. W. Sun, J. P. Perdew, K. A. Lyssenko, Science, 2017, 355, 49–52; DOI: 10.1126/science.aah5975.

    Article  CAS  PubMed  Google Scholar 

  50. A. Bérces, D. M. Whitfield, T. Nukada, Tetrahedron, 2001, 57, 477–491; DOI: 10.1016/S0040-4020(00)01019-X.

    Article  Google Scholar 

  51. S. Komba, C. Galustian, H. Ishida, T. Feizi, R. Kannagi, M. Kiso, Angew. Chem., Int. Ed. Engl., 1999, 38, 1131–1133; DOI: 10.1002/(SICI)1521-3773(19990419)38:8<1131::AIDANIE1131>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  52. C. De Meo, A. V. Demchenko, G.-J. Boons, J. Org. Chem., 2001, 66, 5490–5497; DOI: 10.1021/jo010345f.

    Article  CAS  PubMed  Google Scholar 

  53. C. De Meo, A. V. Demchenko, G.-J. Boons, Austr. J. Chem., 2002, 55, 131–134; DOI: 10.1071/ch02018.

    Article  Google Scholar 

  54. Y. Pan, P. Chefalo, N. Nagy, C. Harding, Z. Guo, J. Med. Chem., 2005, 48, 875–883; DOI: 10.1021/jm0494422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C.-C. Lin, K.-T. Huang, C.-C. Lin, Org. Lett., 2005, 7, 4169–4172; DOI: 10.1021/ol0515210.

    Article  CAS  PubMed  Google Scholar 

  56. N. M. Podvalnyy, N. N. Malysheva, M. V. Panova, A. I. Zinin, A. O. Chizhov, A. V. Orlova, L. O. Kononov, Carbohydr. Res., 2017, 451, 12–28; DOI: 10.1016/j.carres. 2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  57. A. R. Ionescu, D. M. Whitfield, M. Z. Zgierski, T. Nukada, Carbohydr. Res., 2006, 341, 2912–2920; DOI: 10.1016/j. carres.2006.09.027.

    Article  CAS  PubMed  Google Scholar 

  58. T. Hosoya, T. Takano, P. Kosma, T. Rosenau, J. Org. Chem., 2014, 79, 7889–7894; DOI: 10.1021/jo501012s.

    Article  CAS  PubMed  Google Scholar 

  59. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1–S19; DOI: 10.1039/p298700000s1.

    Google Scholar 

  60. T. Aoyagi, S. Ohira, S. Fuse, J. Uzawa, Y. Yamaguchi, H. Tanaka, Chem. Eur. J., 2016, 22, 6968–6973; DOI: 10.1002/chem.201601031.

    Article  CAS  PubMed  Google Scholar 

  61. P. K. Kancharla, D. Crich, J. Am. Chem. Soc., 2013, 135, 18999–19007; DOI: 10.1021/ja410683y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S. Dharuman, D. Crich, Chem. Eur. J., 2016, 22, 4535–4542; DOI: 10.1002/chem.201505019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Kononov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1573–1579, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, M.V., Orlova, A.V. & Kononov, L.O. Stabilization of sialyl cation in axial conformation assisted by remote acyl groups. Russ Chem Bull 67, 1573–1579 (2018). https://doi.org/10.1007/s11172-018-2260-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2260-y

Key words

Navigation