Skip to main content
Log in

Concerted cycloaddition reactions: a study using the parabolic model and quantum chemical modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Concerted cycloaddition reactions were studied by the method of intersecting parabolas (M3IP) and quantum chemical calculations. Experimental data were processed within the framework of the M3IP method and an algorithm for calculating the activation energies (E) and rate constants (k) for reactions from the enthalpies of reactions was developed. The parameters E and k for twelve cycloaddition reactions not studied previously were calculated. Factors affecting the activation energies were established and evaluated; these include the enthalpy of reaction, substituents, and the molecular structure of reactants. Quantum chemical modeling and topological analysis of transition states (TS) of six concerted cycloaddition reactions were performed. Depending on structure of the starting olefins, the TS of reactions can have either a symmetric or asymmetric geometry. This influences their electronic structures, the energies of chemical bonds, and the activation energies of reactions. A comparison of the activation energy values obtained from the M3IP and DFT(B3lyp/6-311++G** ) calculations revealed good agreement between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wasserman, Diels–Alder reactions. Organic Background and Physico-Chemical Aspects, Elsevier, Amsterdam–London–New York, 1965, 109 pp.

    Google Scholar 

  2. E. M. Stocking, R. M. Williams, Angew. Chem., Int. Ed., 2003, 42, 3078.

    Article  CAS  Google Scholar 

  3. F. Bernardi, A. Bottoni, M. J. Field, M. F. Guest, I. H. Hillier, M. A. Robb, A. Venturini, J. Am. Chem. Soc., 1988, 110, 3050.

    Article  CAS  Google Scholar 

  4. K. N. Houk, R. J. Loncharich, J. F. Blake, W. L. Jorgensen, J. Am. Chem. Soc., 1989, 111, 9172.

    Article  CAS  Google Scholar 

  5. Y. Li, K. N. Houk, J. Am. Chem. Soc., 1993, 115, 7478.

    Article  CAS  Google Scholar 

  6. K. N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res., 1995, 28,81.

    Article  CAS  Google Scholar 

  7. T. S. Pokidova, E. T. Denisov, Kinet. Catal., 2009, 50,636.

    Article  CAS  Google Scholar 

  8. T. S. Pokidova, A. F. Shestakov, Russ. J. Phys. Chem. A, 2009, 83, 1860.

    Article  CAS  Google Scholar 

  9. T. S. Pokidova, E. T. Denisov, A. F. Shestakov, Russ. J. Phys. Chem. A, 2010, 84,375.

    Article  CAS  Google Scholar 

  10. T. S. Pokidova, E. T. Denisov, A. F. Shestakov, Petroleum Chem., 2009, 49,363.

    Article  CAS  Google Scholar 

  11. E. T. Denisov, T. S. Pokidova, Russ. Chem. Rev., 2012, 81,415.

    Article  CAS  Google Scholar 

  12. N. S. Emel’yanova, T. S. Pokidova, Russ. Chem. Bull., 2016, 65, 2333.

    Article  CAS  Google Scholar 

  13. E. T. Denisov, Kinet. Catal., 2008, 49,313.

    Article  CAS  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  15. A. Todd, T. K. Keith, AIMAll (Version 15.05.18), Gristmill Software, Overland Park KS, USA, 2015 (aim.tkgristmill.com).

    Google Scholar 

  16. Handbook of Chemistry and Physics, Ed. B. K. Lide, 85 ed., FL: CRC Press, Boca Raton, 2004–2005.

  17. NIST Standard Reference Database 19A, Positive Ion Energetics, Version 2.02, Gaithersburg, 1994.

  18. W. Benson, Thermochemical Kinetics, Wiley, New York, 1976, 320 pp.

    Google Scholar 

  19. E. S. Domalski, E. D. Hearing, J. Phys. Chem. Ref. Data, 1993, 22,805.

    Article  CAS  Google Scholar 

  20. D. R Stull, E. F. Westrum, G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, John Wiley and Sons, Inc., New York–London–Sydney–Toronto, 1969.

    Google Scholar 

  21. I. V. Aleksandrov, Teoret. Eksperim. Khim. [Theor. Exp. Chem.], 1976, 12, 878 (in Russian).

    Google Scholar 

  22. D. Rowley, H. Steiner, Discuss. Faraday Soc., 1951, 198.

    Google Scholar 

  23. J. M. Simmie, Int. J. Chem. Kinet., 1978, 10,227.

    Article  CAS  Google Scholar 

  24. G. B. Kistiakowsky, W. W. Ransom, J. Chem. Phys., 1939, 7, 1939.

    Google Scholar 

  25. W. E. Vaughan, J. Am. Chem. Soc., 1933, 55, 4109.

    Article  CAS  Google Scholar 

  26. J. B. Harkness, G. B. Kistiakowsky, W. H. Mears, J. Chem. Phys., 1937, 5,682.

    Article  CAS  Google Scholar 

  27. G. B. Kistiakowsky, J. R. Lacher, J. Am. Chem. Soc., 1936, 58,123.

    Article  Google Scholar 

  28. R. Walsh, J. M. Wells, J. Chem. Soc. Perkin Trans. 2, 1976, 52.

    Google Scholar 

  29. G. A. Benford, A. Wassermann, J. Chem. Soc., 1939, 362.

    Google Scholar 

  30. G. Huybrechts, Y. Hubin, M. Narmon, B. Van Mele, Int. J. Chem. Kinet., 1982, 14,259.

    Article  CAS  Google Scholar 

  31. N. H. Werstiuk, W. Sokol, Can. J. Chem., 2008, 86,737.

    Article  CAS  Google Scholar 

  32. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Pokidova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1558–1566, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokidova, T.S., Emel’yanova, N.S. Concerted cycloaddition reactions: a study using the parabolic model and quantum chemical modeling. Russ Chem Bull 67, 1558–1566 (2018). https://doi.org/10.1007/s11172-018-2258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2258-5

Key words

Navigation