Skip to main content
Log in

Interface effects and relaxation processes in nanocomposites based on CdSe/ZnS semiconductor quantum dots and porphyrin molecules

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Kodolov, G. E. Zaikov, A. K. Haghi, Applied Nanotechnology: Materials and Applications, Apple Academic Press, Waretown, 2016, 368 pp.

    Book  Google Scholar 

  2. N. O. Petersen, Foundations for Nanoscience and Nanotechnology, CRC Press, London, 2017, 344 pp.

    Book  Google Scholar 

  3. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics, Eds E. Zenkevich, C. Von Borczyskowski, Pan Stanford, Singapore, 2016, 408 pp.

  4. M. Safi, T. Domitrovic, A. Kapur, N. Zhan, F. Aldeek, J. E. Johnson, H. Mattoussi, Bioconjugate Chem., 2017, 28,64.

    Article  CAS  Google Scholar 

  5. V. Sayevich, C. Guhrenz, V. M. Dzhagan, M. Sin, M. Werheid, B. Cai, L. Borchardt, J. Widmer, D. R. T. Zahn, E. Brunner, V. Lesnyak, N. Gaponik, A. Eychmueller, ACS Nano, 2017, 11, 1559.

    Article  CAS  PubMed  Google Scholar 

  6. M. Puri, V. E. Ferry, ACS Nano, 2017, 11, 12240.

    Article  CAS  PubMed  Google Scholar 

  7. H. H. El-Maghrabi, A. Barhoum, A. A. Nada, Y. M. Moustafa, S. M. Seliman, A. M. Youssef, M. Bechelany, J. Photochem. Photobiol A: Chem., 2018, 351,261.

    Article  CAS  Google Scholar 

  8. K. E. Knowles, M. T. Frederick, D. B. Tice, A. J. Morris-Cohen, E. A. Weiss, J. Phys. Chem. Lett., 2012, 3,18.

    Article  CAS  Google Scholar 

  9. G. Kalyuzhny, R. W. Murray, J. Phys. Chem. C, 2005, 109, 7012.

    Article  CAS  Google Scholar 

  10. C. Von Borczyskowski, E. Zenkevich, in Quantum Dot Molecules, Lecture Notes in Nanoscale Science and Technology, Eds J. Wu, Z. M. Wang, Springer, New York–Heidelberg–Dordrecht–London, 2014, p.77.

  11. C. Burda, T.C. Green, S. Link, M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 1783.

    Article  CAS  Google Scholar 

  12. S.-C. Cui, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C, 2011, 115, 1824.

    Article  CAS  Google Scholar 

  13. X. Ji, N. S. Makarov, W. Wang, G. Palui, I. Robel, H. Mattoussi, J. Phys. Chem. C, 2015, 119, 3388.

    Article  CAS  Google Scholar 

  14. A. R. Clapp, I. L. Medintz, H. Uyeda, T. Brent, R. Fisher, E. R. Goldman, M. G. Bawendi, H. Mattoussi, J. Am. Chem. Soc., 2005, 127, 18212.

    Article  CAS  PubMed  Google Scholar 

  15. E. Zenkevich, A. Shulga, F. Cichos, E. Petrov, T. Blaudeck, C. Von Borczyskowski, J. Phys. Chem. B, 2005, 109, 8679.

    Article  CAS  PubMed  Google Scholar 

  16. D. Kowerko, J. Schuster, N. Amecke, M. Abdel-Motta leb, R. Dobrawa, F. Würthner, C. Von Borczyskowski, Chem. Phys., 2010, 12, 4112.

    CAS  Google Scholar 

  17. C. M. Lemon, E. Karnas, M. G. Bawendi, D. G. Nocera, Inorg. Chem., 2013, 52, 10394.

    Article  CAS  PubMed  Google Scholar 

  18. I. Hadar, S. Halivni, N. Even-Dar, A. Faust, U. Banin, J. Phys. Chem. C, 2015, 119, 3849.

    Article  CAS  Google Scholar 

  19. H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc., 2010, 132, 15038.

    Article  CAS  PubMed  Google Scholar 

  20. M. Tagliazucchi, D. B. Tice, C. M. Sweeney, A. J. Morris-Cohen, E. A. Weiss, Inorg. Chem., 2014, 53, 1900.

    Article  CAS  Google Scholar 

  21. D. Kowerko, S. Krause, N. Amecke, M. Abdel-Mottaleb, J. Schuster, C. Von Borczyskowski, Int. J. Mol. Sci., 2009, 10, 5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Issac, S. Jin, T. Lian, J. Am. Chem. Soc., 2008, 130, 11280.

    Article  CAS  PubMed  Google Scholar 

  23. T. Blaudeck, E. Zenkevich, M. Abdel-Mottaleb, K. Szwaykowska, D. Kowerko, F. Cichos, C. Von Borczyskowski, ChemPhysChem, 2012, 13,959.

    Article  CAS  PubMed  Google Scholar 

  24. F. Gerlach, D. Täuber, C. Von Borczyskowski, Chem. Phys. Lett., 2013, 572,90.

    Article  CAS  Google Scholar 

  25. E. Zenkevich, A. Stupak, C. Göhler, C. Krasselt, C. Von Borczyskowski, ACS Nano, 2015, 9, 2886.

    Article  CAS  PubMed  Google Scholar 

  26. A. V. Chernook, A. M. Shulga, E. I. Zenkevich, U. Rempel, C. Von Borczyskowski, J. Phys. Chem., 1996, 100, 1918.

    Article  CAS  Google Scholar 

  27. A. V. Chernook, U. Rempel, C. Von Borczyskowski, E. I. Zenkevich, A. M. Shulga, Chem. Phys. Lett., 1996, 254,229.

    Article  CAS  Google Scholar 

  28. T. Blaudeck, E. Zenkevich, F. Cichos, C. Von Borczyskowski, J. Phys. Chem. C, 2008, 112, 20251.

    Article  CAS  Google Scholar 

  29. E. P. Petrov, F. Cichos, E. I. Zenkevich, D. A. Starukhin, C. Von Borczyskowski, Chem. Phys. Lett., 2005, 402,233.

    Article  CAS  Google Scholar 

  30. E. I. Zenkevich, T. Blaudeck, D. Kowerko, A. P. Stupak, F. Cichos, C. Von Borczyskowski, Macroheterocycles, 2012, 5,98.

    Article  CAS  Google Scholar 

  31. S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press, Cambridge, 2010, 484 pp.

    Book  Google Scholar 

  32. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications, Ed. A. L. Rogach, Springer-Verlag, Wien, 2008, 372 pp.

  33. M. Tachiya, Chem. Phys. Lett., 1975, 33,289.

    Article  CAS  Google Scholar 

  34. A. J. Morris-Cohen, V. Vasilenko, V. A. Amin, M. G. Reuter, E. A. Weiss, ACS Nano, 2012, 6,557.

    Article  CAS  PubMed  Google Scholar 

  35. E. I. Zenkevich, A. P. Stupak, D. Kowerko, C. Von Borczyskowski, Chem. Phys., 2012, 406,21.

    Article  CAS  Google Scholar 

  36. C. De Mello Donega, M. Bode, A. Meijerink, Phys. Rev. B, 2006, 74, 085320.

    Article  CAS  Google Scholar 

  37. C. De Mello Donegá, Nanoparticles, Springer-Verlag, Berlin–Heidelberg, 2014, 310 pp.

    Google Scholar 

  38. S. V. Kilina, S. Ivanov, S. Tretiak, J. Am. Chem. Soc., 2009, 131, 7717.

    Article  CAS  PubMed  Google Scholar 

  39. S. Kilina, K. A. Velizhanin, S. Ivanov, O. V. Prezhdo, S. Tretiak, ACS Nano, 2012, 6, 6515.

    Article  CAS  PubMed  Google Scholar 

  40. O. Voznyy, J. Phys. Chem. C, 2011, 115, 15927.

    Article  CAS  Google Scholar 

  41. E. I. Zen´kevich, E. I. Sagun, A. A. Yarovoi, A. M. Shul´ga, V. N. Knyukshto, A. P. Stupak, C. Von Borczyskowski, Optics Spectrosc., 2007, 103,958.

    Article  CAS  Google Scholar 

  42. P. Schapotschnikow, B. Hommersom, T. J. H. Vlugt, J. Phys. Chem. C, 2009, 113, 12690.

    Article  CAS  Google Scholar 

  43. O. Schmelz, A. Mews, T. Basché, A. Herrmann, K. Müllen, Langmuir, 2001, 17, 2861.

    Article  CAS  Google Scholar 

  44. C. Bullen, P. Mulvaney, Langmuir, 2006, 22, 3007.

    Article  CAS  PubMed  Google Scholar 

  45. B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH, Weinheim, 2002, 599 pp.

    Google Scholar 

  46. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006, 954 pp.

    Book  Google Scholar 

  47. E. Zenkevich, T. Blaudeck, A. Shulga, F. Cichos, C. Von Borczyskowski, J. Luminesc., 2007, 122,784.

    Article  CAS  Google Scholar 

  48. E. I. Zenkevich, T. Blaudeck, M. Heidernätsch, F. Cichos, C. von Borczyskowski, Theor. Exper. Chem., 2009, 45,23.

    Article  CAS  Google Scholar 

  49. A. Issac, C. Von Borczyskowski, F. Cichos, Phys. Rev. B., 2005, 71, 161302.

    Article  CAS  Google Scholar 

  50. S. F. Lee, M. A. Osborne, ChemPhysChem, 2009, 10, 2174.

    Article  CAS  PubMed  Google Scholar 

  51. C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, H. Htoon, Nature, 2011, 479,203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. F. Gao, P. Bajwa, A. Nguyen, C. D. Heyes, ACS Nano, 2017, 11, 2905.

    Article  CAS  PubMed  Google Scholar 

  53. D. Donakowski, J. M. Godbe, R. Sknepnek, K. E. Knowles, M. O. de la Cruz, E. A. Weiss, J. Phys. Chem. C, 2010, 114, 22526.

    Article  CAS  Google Scholar 

  54. N. Chestnoy, T. D. Harris, R. Hull, L. E. Brus, J. Phys. Chem., 1986, 90, 3393.

    Article  CAS  Google Scholar 

  55. C. Burda, S. Link, M. B. Mohamed, M. A. El-Sayed, J. Chem. Phys., 2002, 116, 3828.

    Article  CAS  Google Scholar 

  56. E. Zenkevich, A. Stupak, C. Von Borczyskowski, in Tuning Semiconducting and Metallic Quantum Dots: Spectroscopy and Dynamics, Eds. C. Von Borczyskowski, E. Zenkevich, Pan Stanford Publishers, Singapore, 2017, p.41.

  57. E. P. Petrov, F. Cichos, C. Von Borczyskowski, J. Luminesc. 2006, 119–120,412.

    Article  CAS  Google Scholar 

  58. C. Von Borczyskowski, in Tuning Semiconducting and Metallic Quantum Dots: Spectroscopy and Dynamics, Eds C. Von Borczyskowski, E. Zenkevich, Pan Stanford Publishers, Singapore, 2017, p. 143.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zenkevich.

Additional information

Based on the materials of the V International Conference "Supramolecular systems at the interface" (September 11–15, 2017; Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1220–1230, July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, E.I., von Borczyskowski, C. Interface effects and relaxation processes in nanocomposites based on CdSe/ZnS semiconductor quantum dots and porphyrin molecules. Russ Chem Bull 67, 1220–1230 (2018). https://doi.org/10.1007/s11172-018-2205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2205-5

Key words

Navigation