Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 7, pp 1131–1141 | Cite as

Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries

  • A. G. Medvedev
  • A. A. Mikhaylov
  • T. A. Tripol´skaya
  • P. V. PrikhodchenkoEmail author
Article
  • 23 Downloads

Abstract

The review addresses synthetic approaches to composite materials based on graphene oxide and nano tin dioxide and their electrochemical properties as anodes for lithium- and sodiumion batteries. The introduction of a carbon matrix into the composite material improves the electrochemical characteristics of the anodes. In most methods, the synthesis of graphene oxide–tin dioxide composites is based on the use of tin(II,IV) chlorides as the starting compounds, and the most efficient electrode materials were obtained by the hydrothermal or solvothermal routes. Thermal processing is much more economic than the gas phase deposition protocols but requires heating of a large volume of dilute tin oxide dispersions in an autoclave. Mechanochemistry (ball milling) is also economically unfavorable for the synthesis of composite materials. In addition, large volumes of acidic wastes that should be neutralized and safely discarded are formed when tin chlorides are used. An alternative environmentally friendly technique based on the use of aqueous peroxide solutions can be applied for the production of efficient anode materials based on graphene oxide and tin dioxide. This process does not involve acidic wastes, uses hydrogen peroxide and ethanol as reagents, and accomplishes film deposition (coating) at room temperature. Final thermal treatment is required only for the active material, which minimizes energy expenses and equipment costs.

Key words

tin dioxide anode material composite material lithium-ion battery sodium-ion battery hydrothermal method peroxide method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Armand, J. M. Tarascon, Nature, 2008, 451,652.CrossRefPubMedGoogle Scholar
  2. 2.
    J. B. Goodenough, Y. Kim, Chem. Mater., 2010, 22,587.CrossRefGoogle Scholar
  3. 3.
    J. M. Tarascon, M. Armand, Nature, 2001, 414,359.CrossRefPubMedGoogle Scholar
  4. 4.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci., 2011, 4, 3243.CrossRefGoogle Scholar
  5. 5.
    J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 2013, 135, 1167.CrossRefPubMedGoogle Scholar
  6. 6.
    S. M. Rezvanizaniani, Z. Liu, Y. Chen, J. Lee, J. Power Sources, 2014, 256,110.CrossRefGoogle Scholar
  7. 7.
    L. Lu, X. Han, J. Li, J. Hu, M. Ouyang, J. Power Sources, 2013, 226,272.CrossRefGoogle Scholar
  8. 8.
    J. Jaguemont, L. Boulon, Y. Dube, Appl. Energy, 2016, 164,99.CrossRefGoogle Scholar
  9. 9.
    J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev., 2017, 46, 3529.CrossRefPubMedGoogle Scholar
  10. 10.
    K. Kubota, S. Komaba, J. Electrochem. Soc., 2015, 162, A2538.CrossRefGoogle Scholar
  11. 11.
    H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci., 2013, 6, 2338.CrossRefGoogle Scholar
  12. 12.
    Lithium-Ion Batteries, Eds M. Yoshio, R. J. Brodd, A. Kozawa, Springer, New York, 2009, 452 pp.Google Scholar
  13. 13.
    D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochim. Acta, 1999, 45,67.CrossRefGoogle Scholar
  14. 14.
    N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today, 2015, 18,252.CrossRefGoogle Scholar
  15. 15.
    D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H.-J. Kim, Electrochim. Acta, 2004, 50,247.CrossRefGoogle Scholar
  16. 16.
    S. S. Zhang, J. Power Sources, 2006, 162, 1379.CrossRefGoogle Scholar
  17. 17.
    S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater., 2012, 2,710.CrossRefGoogle Scholar
  18. 18.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev., 2014, 114, 11636.CrossRefPubMedGoogle Scholar
  19. 19.
    H. Y. Kang, Y. C. Liu, K. Z. Cao, Y. Zhao, L. F. Jiao, Y. J. Wang, H. T. Yuan, J. Mater. Chem. A, 2015, 3, 17899.CrossRefGoogle Scholar
  20. 20.
    T. L. Kulova, A. M. Skundin, Elektrokhim. Energetika [Electro chemical Power Engineering], 2016, 16, 122 (in Russian).Google Scholar
  21. 21.
    T. L. Kulova, A. M. Skundin, Russ. Chem. Bull., 2017, 66, 1329.CrossRefGoogle Scholar
  22. 22.
    D. A. Stevens, J. R. Dahn, J. Electrochem. Soc., 2000, 147, 1271.CrossRefGoogle Scholar
  23. 23.
    S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859.CrossRefGoogle Scholar
  24. 24.
    M. A. Munoz-Marquez, D. Saurel, J. L. Gomez-Camer, M. Casas-Cabanas, E. Castillo-Martinez, T. Rojo, Adv. Funct. Mater., 2017, 7, 1700463.Google Scholar
  25. 25.
    Y. Kim, K.-H. Ha, S. M. Oh, K. T. Lee, Chem. Eur. J., 2014, 20, 11980.CrossRefPubMedGoogle Scholar
  26. 26.
    P. G. Balakrishnan, R. Ramesh, T. P. Kumar, J. Power Sources, 2006, 155,401.CrossRefGoogle Scholar
  27. 27.
    B. Barnett, D. Ofer, S. Sriramulu, R. Stringfellow, in Batteries for Sustainability, Ed. R. Brodd, Springer, New York, 2013, p.285.Google Scholar
  28. 28.
    M. Winter, J. O. Besenhard, Electrochim. Acta, 1999, 45,31.CrossRefGoogle Scholar
  29. 29.
    R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, M.-M. Titirici, Chem. Mater., 2008, 20, 1227.CrossRefGoogle Scholar
  30. 30.
    Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater., 2012, 2,95.CrossRefGoogle Scholar
  31. 31.
    F. Han, W.-C. Li, M.-R. Li, A.-H. Lu, J. Mater. Chem., 2012, 22, 9645.CrossRefGoogle Scholar
  32. 32.
    L.-Y. Jiang, X.-L. Wu, Y.-G. Guo, L.-J. Wan, J. Phys. Chem. C, 2009, 113, 14213.CrossRefGoogle Scholar
  33. 33.
    X. Zhou, L.-J. Wan, Y.-G. Guo, Adv. Mater., 2013, 25, 2152.CrossRefPubMedGoogle Scholar
  34. 34.
    Z. Li, J. Ding, H. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, Nano Energy, 2015, 15,369.CrossRefGoogle Scholar
  35. 35.
    Y. Chen, B. Song, R. M. Chen, L. Lu, J. Xue, J. Mater. Chem. A, 2014, 2, 5688.CrossRefGoogle Scholar
  36. 36.
    N. Yesibolati, M. Shahid, W. Chen, M. N. Hedhili, M. C. Reuter, F. M. Ross, H. N. Alshareef, Small, 2014, 10, 2849.CrossRefPubMedGoogle Scholar
  37. 37.
    C. J. Pelliccione, E. V. Timofeeva, C. U. Segre, J. Phys. Chem. C, 2016, 120, 5331.CrossRefGoogle Scholar
  38. 38.
    R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen, B. Zhao, B. Rainwater, Ch. Yang, M. Zhu, M. Liu, Energy Environ. Sci., 2016, 9,595.CrossRefGoogle Scholar
  39. 39.
    J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science, 2010, 330, 1515.CrossRefPubMedGoogle Scholar
  40. 40.
    C.-M. Wang, W. Xu, J. Liu, J.-G. Zhang, L. V. Saraf, B. W. Arey, D. Choi, Z.-G. Yang, J. Xiao, S. Thevuthasan, D. R. Baer, Nano Lett., 2011, 11, 1874.CrossRefPubMedGoogle Scholar
  41. 41.
    J. W. Wang, X. H. Liu, S. X. Mao, J. Y. Huang, Nano Lett., 2012, 12, 5897.CrossRefPubMedGoogle Scholar
  42. 42.
    L. F. Xiao, Y. L. Cao, J. Xiao, W. Wang, L. Kovarik, Z. M. Nie, J. Liu, Chem. Commun., 2012, 48, 3321.CrossRefGoogle Scholar
  43. 43.
    M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S. X. Dou, Adv. Mater., 2017, 29, 1700622.CrossRefGoogle Scholar
  44. 44.
    V. L. Chevrier, G. Ceder, J. Electrochem. Soc., 2011, 158, A1011.CrossRefGoogle Scholar
  45. 45.
    M. Gu, A. Kushima, Y. Shao, J.-G. Zhang, J. Liu, N. D. Browning, J. Li, C. Wang, Nano Lett., 2013, 13, 5203.CrossRefPubMedGoogle Scholar
  46. 46.
    L. D. Ellis, T. D. Hatchard, M. N. Obrovac, J. Electrochem. Soc., 2012, 159, A1801.CrossRefGoogle Scholar
  47. 47.
    Z. Li, J. Ding, D. Mitlin, Acc. Chem. Res., 2015, 48, 1657.CrossRefPubMedGoogle Scholar
  48. 48.
    J. S. Chen, X. W. Lou, Small, 2013, 9, 1877.CrossRefPubMedGoogle Scholar
  49. 49.
    S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, J. Power Sources, 2014, 257,421.CrossRefGoogle Scholar
  50. 50.
    A. K. Geim, K. S. Novoselov, Nat. Mater., 2007, 6,183.CrossRefPubMedGoogle Scholar
  51. 51.
    X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Nat. Rev. Mater., 2017, 2, 17046.CrossRefGoogle Scholar
  52. 52.
    L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Adv. Energy Mater., 2016, 6, 1502159.CrossRefGoogle Scholar
  53. 53.
    M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev., 2010, 110,132.CrossRefPubMedGoogle Scholar
  54. 54.
    X. Cai, L. Lai, Z. Shen, J. Lin, J. Mater. Chem. A, 2017, 5, 15423.CrossRefGoogle Scholar
  55. 55.
    V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, Energy Environ. Sci., 2014, 7, 1564.CrossRefGoogle Scholar
  56. 56.
    R. K. Singh, R. Kumar, D. P. Singh, RSC Adv., 2016, 6, 64993.CrossRefGoogle Scholar
  57. 57.
    B. C. Brodie, Ann. Chim. Phys., 1860, 59,466.Google Scholar
  58. 58.
    L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.CrossRefGoogle Scholar
  59. 59.
    S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.CrossRefGoogle Scholar
  60. 60.
    H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep., 2016, 6, 36143.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Z. Spitalsky, M. Danko, J. Mosnacek, Curr. Org. Chem., 2011, 15, 1133.CrossRefGoogle Scholar
  62. 62.
    D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 2010, 39,228.CrossRefPubMedGoogle Scholar
  63. 63.
    O. C. Compton, S. T. Nguyen, Small, 2010, 6,711.CrossRefPubMedGoogle Scholar
  64. 64.
    J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, J. Mater. Chem., 2009, 19, 1859.CrossRefGoogle Scholar
  65. 65.
    K.-C. Hsu, C.-Y. Lee, H.-T. Chiu, RSC Adv., 2014, 4, 26115.CrossRefGoogle Scholar
  66. 66.
    J. Zhu, G. Zhang, S. Gu, B. Lu, Electrochim. Acta, 2014, 150,308.CrossRefGoogle Scholar
  67. 67.
    Z. Wen, F. Zheng, H. Yu, Z. Jiang, K. Liu, Mater. Charact., 2013, 76,1.CrossRefGoogle Scholar
  68. 68.
    D. Lei, M. Zhang, Q. Hao, L. Chen, Q. Li, E. Zhang, T. Wang, Mater. Lett., 2011, 65, 1154.CrossRefGoogle Scholar
  69. 69.
    Y. Wang, J. Y. Lee, J. Phys. Chem. B, 2004, 108, 17832.CrossRefGoogle Scholar
  70. 70.
    M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, H.-K. Liu, Angew. Chem., Int. Ed., 2007, 119,764.CrossRefGoogle Scholar
  71. 71.
    Z. Ying, Q. Wan, H. Cao, Z. T. Song, S. L. Feng, Appl. Phys. Lett., 2005, 87, 113108.CrossRefGoogle Scholar
  72. 72.
    N. H. Zhao, L. C. Yang, P. Zhang, G. J. Wang, B. Wang, B. D. Yao, Y. P. Wu, Mater. Lett., 2010, 64,972.CrossRefGoogle Scholar
  73. 73.
    H. Z. Li, L. Y. Yang, J. Liu, S. T. Li, L. B. Fang, Y. K. Lu, H. R. Yang, S. L. Liu, M. Lei, J. Power Sources, 2016, 324,780.CrossRefGoogle Scholar
  74. 74.
    B. H. Zhou, S. L. Yang, L. D. Wu, W. Wu, W. F. Wei, L. B. Chen, H. B. Zhang, J. Pan, X. Xiong, RSC Adv., 2015, 5, 49926.CrossRefGoogle Scholar
  75. 75.
    A. Abnavi, M. S. Faramarzi, A. Abdollahi, R. Ramzani, S. Ghasemi, Z. Sanaee, Nanotechnol., 2017, 28, 255404.CrossRefGoogle Scholar
  76. 76.
    S. Wang, N. Du, H. Zhang, J. X. Yu, D. R. Yang, J. Phys. Chem. C, 2011, 115, 11302.CrossRefGoogle Scholar
  77. 77.
    L. M. Li, X. M. Yin, S. A. Liu, Y. G. Wang, L. B. Chen, T. H. Wang, Electrochem. Commun., 2010, 12, 1383.CrossRefGoogle Scholar
  78. 78.
    W. Q. Zeng, F. P. Zheng, R. Z. Li, Y. Zhan, Y. Y. Li, J. P. Liu, Nanoscale, 2012, 4, 2760.CrossRefPubMedGoogle Scholar
  79. 79.
    W. J. Lee, M. H. Park, Y. Wang, J. Y. Lee, J. Cho, Chem. Commun., 2010, 46,622.CrossRefGoogle Scholar
  80. 80.
    N. Du, H. Zhang, B. D. Chen, X. Y. Ma, X. H. Huang, J. P. Tu, D. R. Yang, Mater. Res. Bull., 44,211.Google Scholar
  81. 81.
    L. L. Xing, B. He, Y. X. Nie, P. Deng, C. X. Cui, X. Y. Xue, Mater. Lett., 2014, 105,169.CrossRefGoogle Scholar
  82. 82.
    J. Yue, W. P. Wang, N. N. Wang, X. F. Yang, J. K. Feng, J. Yang, Y. T. Qian, J. Mater. Chem. A, 2015, 3, 23194.CrossRefGoogle Scholar
  83. 83.
    L. Zhang, H. B. Wu, B. Liu, X. W. D. Lou, Energy Environ. Sci., 2014, 7, 1013.CrossRefGoogle Scholar
  84. 84.
    A. Jahel, C. M. Ghimbeu, L. Monconduit, C. Vix-Guterl, Adv. Energy Mater., 2014, 4, 1400025.CrossRefGoogle Scholar
  85. 85.
    L. Zhang, G. Zhang, H. B. Wu, L. Yu, X. W. D. Lou, Adv. Mater., 2013, 25, 2589.CrossRefPubMedGoogle Scholar
  86. 86.
    G. Zhou, D.-W. Wang, L. Li, N. Li, F. Li, H.-M. Cheng, Nanoscale, 2013, 5, 1576.CrossRefPubMedGoogle Scholar
  87. 87.
    J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Adv. Mater., 2004, 16, 1432.CrossRefGoogle Scholar
  88. 88.
    Z. Lu, H. Wang, CrystEngComm, 2014, 16,550.CrossRefGoogle Scholar
  89. 89.
    A. Mehdinia, E. Ziaei, A. Jabbari, Electrochim. Acta, 2014, 130,512.CrossRefGoogle Scholar
  90. 90.
    D. Banerjee, D. Nawn, K. Chattopadhyay, J. Alloys Compd., 2013, 572,49.CrossRefGoogle Scholar
  91. 91.
    X. Liu, M. Wu, M. Li, X. Pan, J. Chen, X. Bao, J. Mater. Chem. A, 2013, 1 9527.CrossRefGoogle Scholar
  92. 92.
    J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun., 2009, 11, 1849.CrossRefGoogle Scholar
  93. 93.
    S.-M. Paek, E. Yoo, I. Honma, Nano Lett., 2008, 9,72.CrossRefGoogle Scholar
  94. 94.
    C. Zhong, J. Wang, Z. Chen, H. Liu, J. Phys. Chem. C, 2011, 115, 25115.CrossRefGoogle Scholar
  95. 95.
    J. Liang, W. Wei, D. Zhong, Q. Yang, L. Li, L. Guo, ACS Appl. Mater. Interfaces, 2012, 4,454.CrossRefPubMedGoogle Scholar
  96. 96.
    Y. Li, X. Lv, J. Lu, J. Li, J. Phys. Chem. C, 2010, 114, 21770.CrossRefGoogle Scholar
  97. 97.
    S. Prabakar, Y. H. Hwang, E. G. Bae, S. Shim, D. Kim, M. S. Lah, K. S. Sohn, M. Pyo, Adv. Mater., 2013, 25, 3307.CrossRefPubMedGoogle Scholar
  98. 98.
    C. Xu, J. Sun, L. Gao, J. Mater. Chem., 2012, 22,975.CrossRefGoogle Scholar
  99. 99.
    Y. Zhao, L. P. Wang, M. T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, Adv. Energy Mater., 2017, 7, 1601424CrossRefGoogle Scholar
  100. 100.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater., 2015, 14,271.CrossRefPubMedGoogle Scholar
  101. 101.
    F. Ye, B. Zhao, R. Ran, Z. Shao, Chem. Eur. J., 2014, 20, 4055.CrossRefPubMedGoogle Scholar
  102. 102.
    S. Li, Y. Wang, J. Qiu, M. Ling, H. Wang, W. Martensc, S. Zhang, RSC Adv., 2014, 4, 50148.CrossRefGoogle Scholar
  103. 103.
    M. Xie, X. Sun, S. M. George, C. Zhou, J. Lian, Y. Zhou, ACS Appl. Mater. Interfaces, 2015, 7, 27735.CrossRefPubMedGoogle Scholar
  104. 104.
    X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai, M. W. Verbrugge, Adv. Funct. Mater., 2012, 22, 1647.CrossRefGoogle Scholar
  105. 105.
    R. Thomas, G. M. Rao, J. Mater. Chem. A, 2015, 3,274.CrossRefGoogle Scholar
  106. 106.
    X. Zhou, Y. Yin, L. Wan, Y. Guo, J. Mater. Chem., 2012, 22, 17456.CrossRefGoogle Scholar
  107. 107.
    S. Jiang, W. Yue, Z. Gao, Y. Ren, H. Ma, X. Zhao, Y. Liu, X. Yang, J. Mater. Sci., 2013, 48, 3870.CrossRefGoogle Scholar
  108. 108.
    B. P. Vinayan, S. Ramaprabhu, J. Mater. Chem. A, 2013, 1, 3865.CrossRefGoogle Scholar
  109. 109.
    X. Lu, G. Wu, Q. Xiong, H. Qin, Z. Ji, H. Pan, Appl. Surf. Sci., 2017, 422,645.CrossRefGoogle Scholar
  110. 110.
    C. Botas, D. Carriazo, G. Singh, T. Rojo, J. Mater. Chem. A, 2015, 3, 13402.CrossRefGoogle Scholar
  111. 111.
    G. Wu, M. Wu, D. Wang, L. Yin, J. Ye, S. Deng, Z. Zhu, W. Ye, Z. Li, Appl. Surf. Sci., 2014, 315,400.CrossRefGoogle Scholar
  112. 112.
    X. J. Zhu, Y. W. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, J. Power Sources, 2011, 196, 6473.CrossRefGoogle Scholar
  113. 113.
    B. Zhao, G. Zhang, J. Song, Y. Jiang, H. Zhuang, P. Liu, T. Fang, Electrochim. Acta, 2011, 56, 7340.CrossRefGoogle Scholar
  114. 114.
    X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.-M. Tang, H. Li, T. Zhai, L. Li, Y. Bando, D. Golberg, Adv. Funct. Mater., 2012, 22, 2682.CrossRefGoogle Scholar
  115. 115.
    L. S. Zhang, L. S. L.-Y. Jiang, H.-J. Yan, W. D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, L.-J. Wan, J. Mater. Chem., 2010, 20, 5462.CrossRefGoogle Scholar
  116. 116.
    X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, Carbon, 2011, 49,133.CrossRefGoogle Scholar
  117. 117.
    W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cuic, C. Liu, J. Mater. Chem. A, 2017, 5, 10027.CrossRefGoogle Scholar
  118. 118.
    D. Liu, Z. Kong, X. Liu, A. Fu, Y. Wang, Y.-G. Guo, P. Guo, H. Li, X. S. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 2515.CrossRefPubMedGoogle Scholar
  119. 119.
    H.-G. Wang, C. Jiang, C. Yuan, Q. Wu, Q. Li, Q. Duan, Chem. Eng. J., 2018, 332,237.CrossRefGoogle Scholar
  120. 120.
    J. Lin, Z. W. Peng, C. S. Xiang, G. D. Ruan, Z. Yan, D. Natelson, J. M. Tour, ACS Nano, 2013, 7, 6001.CrossRefPubMedGoogle Scholar
  121. 121.
    J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun., 2009, 11, 1849.CrossRefGoogle Scholar
  122. 122.
    Z. Du, X. Yin, M. Zhang, Q. Hao, Y. Wang, T. Wang, Mater. Lett., 2010, 64, 2076.CrossRefGoogle Scholar
  123. 123.
    J. Guo, B. Jiang, X. Zhang, H. Liu, J. Power Sources, 2014, 262,15.CrossRefGoogle Scholar
  124. 124.
    M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem., 2011, 21, 1673.CrossRefGoogle Scholar
  125. 125.
    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, J. Phys. Chem. C, 2012, 116, 22149.CrossRefGoogle Scholar
  126. 126.
    N. Li, H. Song, H. Cui, C. Wang, Electrochim. Acta, 2014, 130,670.CrossRefGoogle Scholar
  127. 127.
    W. Zhang, M. Li, X. Z. Xiao, X. Huang, Y. Q. Jiang, X. L. Fan, L. X. Chen, J. Alloys Compd., 2017, 727,1.CrossRefGoogle Scholar
  128. 128.
    C. H. Tan, J. Cao, A. M. Khattak, F. P. Cai, B. Jiang, G. Yang, S. Q. Hu, J. Power Sources, 2014, 270,28.CrossRefGoogle Scholar
  129. 129.
    Y. Huang, D. Wu, S. Han, S. Li, L. Xiao, F. Zhang, X. Feng, ChemSusChem, 2013, 6, 1510.CrossRefPubMedGoogle Scholar
  130. 130.
    R. Wang, C. Xu, J. Sun, L. Gao, H. Yao, ACS Appl. Mater. Interfaces, 2014, 6, 3427.CrossRefPubMedGoogle Scholar
  131. 131.
    C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon, 2012, 50, 1897.CrossRefGoogle Scholar
  132. 132.
    D. W. Su, H. J. Ahn, G. X. Wang, Chem. Commun., 2013, 49, 3131.CrossRefGoogle Scholar
  133. 133.
    Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou, Y. J. Kim, J. Mater. Chem. A, 2014, 2,529.CrossRefGoogle Scholar
  134. 134.
    B. Dursun, E. Topac, R. Alibeyli, A. Ata, O. Ozturk, R. Demir-Cakan, J. Alloys Compd., 2017, 728, 1305.CrossRefGoogle Scholar
  135. 135.
    J. Zhu, D. Deng, Chem. Eng. Sci., 2016, 154,54.CrossRefGoogle Scholar
  136. 136.
    Y. D. Zhang, J. Xie, S. C. Zhang, P. Y. Zhu, G. S. Cao, X. B. Zhao, Electrochim. Acta, 2014, 151,8.CrossRefGoogle Scholar
  137. 137.
    C.-H. Jo, J.-H. Jo, S.-T. Myung, J. Alloys Compd., 2018, 731,339.CrossRefGoogle Scholar
  138. 138.
    J.-I. Lee, J. Song, Y. Cha, S. Fu, C. Zhu, X. Li, Y. Lin, M.-K. Song, Nano Res., 2017, 10, 4398.CrossRefGoogle Scholar
  139. 139.
    J. Patra, H.-C. Chen, C.-H. Yang, C.-T. Hsieh, C.-Y. Su, J.-K. Chang, Nano Energy, 2016, 28,124.CrossRefGoogle Scholar
  140. 140.
    J.-Y. Piquemal, E. Briot, J.-M. Bregeault, Dalton Trans., 2013, 42,29.CrossRefPubMedGoogle Scholar
  141. 141.
    M. Hibino, H. Nakajima, T. Kudo, N. Mizuno, Solid State Ionics, 1997, 100,211.CrossRefGoogle Scholar
  142. 142.
    B. Pecquenard, H. Lecacheux, S. Castro-Garcia, J. Livage, J. Sol-Gel Sci. Technol., 1998, 13,923.CrossRefGoogle Scholar
  143. 143.
    P. K. Biswas, N. C. Pramanik, M. K. Mahapatra, D. Ganguli, J. Livage, Mater. Lett., 2003, 57, 4429.CrossRefGoogle Scholar
  144. 144.
    K. Hinokuma, K. Ogasawara, A. Kishimoto, S. Takano, T. Kudo, Solid State Ionics, 1992, 507,53.Google Scholar
  145. 145.
    M. Hibino, M. Ugaji, A. Kishimoto, T. Kudo, Solid State Ionics, 1995, 79,239.CrossRefGoogle Scholar
  146. 146.
    K. Lee, Y. Wang, G. Cao, J. Phys. Chem. B, 2005, 109, 16700.CrossRefPubMedGoogle Scholar
  147. 147.
    S. Takano, A. Kishimoto, K. Hinokuma, T. Kudo, Solid State Ionics, 1994, 70–71,636.CrossRefGoogle Scholar
  148. 148.
    T. Ivanova, A. Harizanova, Mater. Res. Bull., 2005, 40,411.CrossRefGoogle Scholar
  149. 149.
    A. A. Mikhaylov, A. G. Medvedev, D. A. Grishanov, S. Sladkevich, J. Gun, P. V. Prikhodchenko, Z. J. Xu, A. Nagasubramanian, M. Srinivasan, O. Lev, Langmuir, 2018, 34, 2741.CrossRefPubMedGoogle Scholar
  150. 150.
    A. G. DiPasquale, J. M. Mayer, J. Am. Chem. Soc., 2008, 130, 1812.CrossRefPubMedGoogle Scholar
  151. 151.
    E. G. Ippolitov, T. A. Tripol´skaya, P. V. Prikhodchenko, D. A. Pankratov, Russ. J. Inorg. Chem., 2001, 46,851.Google Scholar
  152. 152.
    A. V. Churakov, P. V. Prikhodchenko, E. G. Ippolitov, M. Y. Antipin, Russ. J. Inorg. Chem., 2002, 47,68.Google Scholar
  153. 153.
    P. V. Prikhodchenko, A. V. Churakov, B. N. Novgorodov, D. I. Kochubei, Yu. B. Muravlev, E. G. Ippolitov, Russ. J. Inorg. Chem., 2003, 48,16.Google Scholar
  154. 154.
    A. V. Churakov, S. Sladkevich, O. Lev, T. A. Tripol´skaya, P. V. Prikhodchenko, Inorg. Chem., 2010, 49, 4762.CrossRefPubMedGoogle Scholar
  155. 155.
    S. Sladkevich, V. Gutkin, O. Lev, E. A. Legurova, D. F. Khabibulin, M. A. Fedotov, V. Uvarov, T. A. Tripol´skaya, P. V. Prikhodchenko, J. Sol-Gel Sci. Technol., 2009, 50,229.CrossRefGoogle Scholar
  156. 156.
    E. A. Legurova, S. Sladkevich, O. Lev, M. A. Fedotov, D. F. Khabibulin, T. A. Tripol´skaya, P. V. Prikhodchenko, Russ. J. Inorg. Chem., 2009, 54,824.CrossRefGoogle Scholar
  157. 157.
    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol´skaya, E. G. Ippolitov, Russ. J. Inorg. Chem., 2001, 46, 1881.Google Scholar
  158. 158.
    P. V. Prikhodchenko, E. A. Ustinova, M. A. Fedotov, E. G. Ippolitov, Russ. J. Inorg. Chem., 2004, 49, 1562.Google Scholar
  159. 159.
    A. A. Mikhaylov, A. G. Mevdedev, T. A. Tripol´skaya, V. S. Popov, A. S. Mokrushin, D. P. Krut´ko, P. V. Prikhodchenko, O. Lev, Dalton Trans., 2017, 46, 16171.CrossRefPubMedGoogle Scholar
  160. 160.
    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, M. V. Vener, T. A. Tripol´skaya, S. Cohen, O. Lev, P. V. Prikhodchenko, Inorg. Chem., 2015, 54, 8058.CrossRefPubMedGoogle Scholar
  161. 161.
    A. A. Mikhaylov, A. G. Medvedev, A. V. Churakov, D. A. Grishanov, P. V. Prikhodchenko, O. Lev, Chem. Eur. J., 2016, 22, 2980.CrossRefPubMedGoogle Scholar
  162. 162.
    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, T. A. Tripol´skaya, O. Lev, Inorg. Chem., 2010, 49, 9110.CrossRefPubMedGoogle Scholar
  163. 163.
    M. V. Vener, A. G. Medvedev, A. V. Churakov, P. V. Prikhodchenko, T. A. Tripol´skaya, O. Lev, J. Phys. Chem. A, 2011, 115, 13657.CrossRefPubMedGoogle Scholar
  164. 164.
    I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, A. G. Medvedev, O. Lev, A. V. Churakov, Crystal Growth Des., 2017, 17,214.CrossRefGoogle Scholar
  165. 165.
    A. G. Medvedev, A. V. Shishkina, O. Lev, P. V. Prikhodchenko, M. V. Vener, RSC Adv., 2015, 5, 29601.CrossRefGoogle Scholar
  166. 166.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, V. Gutkin, A. A. Mikhaylov, V. M. Novotortsev, J. X. Zhu, D. Yang, Q. Y. Yan, H. H. Hng, Y. Y. Tay, Z. Tsakadze, O. Lev, Nanotechnology, 2012, 23, 485601.CrossRefPubMedGoogle Scholar
  167. 167.
    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, A. Nagasubramanian, S. Madhavi, S. K. Batabyal, Q. Zhang, J. Gun, P. V. Prikhodchenko, O. Lev, J. Mater. Chem. A, 2015, 3, 20681.CrossRefGoogle Scholar
  168. 168.
    A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol´skaya, E. A. Mel´nik, I. V. Shabalova, P. V. Prikhodchenko, O. Lev, Russ. J. Inorg. Chem., 2016, 61, 1430.CrossRefGoogle Scholar
  169. 169.
    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A. A. Mikhaylov, A. G. Medvedev, O. Lev, J. Mater. Chem. A, 2014, 2, 8431.CrossRefGoogle Scholar
  170. 170.
    V. Lakshmi, Y. Chen, A. A. Mikhaylov, A. G. Medvedev, I. Sultana, M. M. Rahman, O. Lev, P. V. Prikhodchenko, A. M. Glushenkov, Chem. Commun., 2017, 53, 8272.CrossRefGoogle Scholar
  171. 171.
    A. G. Medvedev, A. A. Mikhaylov, D. A. Grishanov, D. Y. W. Yu, J. Gun, S. Sladkevich, O. Lev, P. V. Prikhodchenko, ACS Appl. Mater. Interfaces, 2017, 9, 9152.CrossRefPubMedGoogle Scholar
  172. 172.
    A. A. Mikhaylov, A. G. Medvedev, D. A. Grishanov, T. A. Tripol´skaya, E. A. Mel´nik, P. V. Prikhodchenko, O. Lev, Russ. J. Inorg. Chem., 2017, 62, 1624.CrossRefGoogle Scholar
  173. 173.
    D. Y. W. Yu, S. K. Batabyal, J. Gun, S. Sladkevich, A. A. Mikhaylov, A. G. Medvedev, V. M. Novotortsev, O. Lev, P. V. Prikhodchenko, Main Group Met. Chem., 2015, 38,43.CrossRefGoogle Scholar
  174. 174.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, V. Gutkin, A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol´skaya, O. Lev, Carbon, 2012, 50, 5463.CrossRefGoogle Scholar
  175. 175.
    P. V. Prikhodchenko, J. Gun, S. Sladkevich, A. A. Mikhaylov, O. Lev, Y. Y. Tay, S. K. Batabyal, D. Y. W. Yu, Chem. Mater., 2012, 24, 4750.CrossRefGoogle Scholar
  176. 176.
    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, Nat. Commun., 2013, 4, 2922.CrossRefPubMedGoogle Scholar
  177. 177.
    D. A. Grishanov, A. A. Mikhaylov, A. G. Medvedev, J. Gun, P. V. Prikhodchenko, A. Nagasubramanian, S. Madhavi, O. Lev, Energy Technol., 2017, 6,127.CrossRefGoogle Scholar
  178. 178.
    D. A. Grishanov, A. A. Mikhaylov, A. G. Medvedev, J. Gun, A. Nagasubramanian, S. Madhavi, O. Lev, P. V. Prikhodchenko, J. Colloid Interface Sci., 2018, 512, 165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. G. Medvedev
    • 1
  • A. A. Mikhaylov
    • 1
  • T. A. Tripol´skaya
    • 1
  • P. V. Prikhodchenko
    • 1
    Email author
  1. 1.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations