Skip to main content
Log in

Fabrication and physicochemical characterization of graphene oxide derived from thermally expanded graphite

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Graphene oxide was obtained from expanded graphite according to the modified Hummers method. The reaction time was significantly reduced (from 24 to 8 h) by applying the expanded graphite in the oxidation process. The interlayer distance in obtained samples was equal to 0.70–0.74 nm. Structural features of the material were studied by the powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, XPS spectroscopy, and NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wang, X. Sun, C. Li, J. Lian, Appl. Phys. Lett., 2011, 99: 053114:1–053114:3.

    Article  CAS  Google Scholar 

  2. K. Krishnamoorthy, R. Mohan, S.-J. Kim, Appl. Phys. Lett., 2011, 98: 244101:1–244101:3.

    Article  CAS  Google Scholar 

  3. U. Khan, P. May, A. O. Neill, J. N. Coleman, Carbon, 2010, 48: 4035–4041.

    Article  CAS  Google Scholar 

  4. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Carbon, 2011, 49: 2917–2925.

    Article  CAS  Google Scholar 

  5. Ping-Ping Zuo, Hua-Feng Feng, Zhi-Zhen Xu, Ling-Fan Zhang, Yu-Long Zhang, Wei Xia, Wen-Qing Zhang, Chem. Central J., 2013, 7: 49.

    Article  CAS  Google Scholar 

  6. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, Nature, 2007, 448: 457–460.

    Article  CAS  PubMed  Google Scholar 

  7. D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Langmuir, 2010, 26: 16096–16102.

    Article  CAS  PubMed  Google Scholar 

  8. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 2010, 39: 228–240.

    Article  CAS  PubMed  Google Scholar 

  9. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. J. Huang, J. Kim, Am. Chem. Soc., 2010, 132: 8180–8186.

    Article  CAS  Google Scholar 

  10. B. C. Brodie, Philos Trans. R. Soc. London, 1859, 149: 249–259.

    Article  Google Scholar 

  11. L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31: 1481–1487.

    Article  CAS  Google Scholar 

  12. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80: 1339.

    Article  CAS  Google Scholar 

  13. C. M. Daniela, V. K. Dmitry, M. B. Jacob, S. Alexander, S. Zhengzong, S. Alexander, B. A. Lawrence, L. Wei, ACS Nano, 2010, 4: 4806–4814.

    Article  CAS  Google Scholar 

  14. N. A. Kotov, I. Dekany, J. H. Fendler, Adv. Mater., 1996, 8: 637.

    Article  CAS  Google Scholar 

  15. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon, 2013, 53: 38–49.

    Article  CAS  Google Scholar 

  16. S. V. Tkachev, E. Yu. Buslaeva, A. V. Naumkin, S. L. Kotova, I. V. Laure, S. P. Gubin, Neorgan. Mater., 2012, 48: 796–802 [Inorg. Mater. (Engl. Transl.), 2012, 48].

    Article  CAS  Google Scholar 

  17. V. M. Samoilov, A. V. Nikolaeva, E. A. Danilov, G. A. Erpuleva, N. N. Trofimova, S. S. Abramchuk, K. V. Ponkratov, Neorgan. Mater., 2015, 51: 98–105 [Inorg. Mater. (Engl. Transl.), 2015, 51].

    Article  CAS  Google Scholar 

  18. G. Furdin, Fuel, 1998, 77: 479–485.

    Article  CAS  Google Scholar 

  19. A. S. Fialkov, Uglerod. Mezhsloevye soedineniya i kompozity na ikh osnove [Carbon. Interlayer Compounds and Their Composites], Aspekt-Press, Moscow, 1997, 718 pp (in Russian).

  20. N. V. Chesnokov, B. N. Kuznetsov, N. M. Mikova, Zh. Sib. Fed. Univ., Khimiya [J. Siberian Federal State Univ., Chemistry], Krasnoyarsk, 2013, 6, No. 1, 11–22 (in Russian).

    CAS  Google Scholar 

  21. N. E. Sorokina, V. V. Avdeev, A. S. Tikhomirov, M. A. Lutfullin, M. I. Sandaminov, in Kompozitsionnye nanomaterialy na osnove interkalirovannogo grafita. Uchebnoe posobie dlya studentov po spetsialnosti “Kompozitsionnye nanomaterialy” [Composite Materials Based on Intercalated Graphite. Handbook for Students in the Major “Composite Materials”], Moscow State University, Moscow, 2010, p. 50 (in Russian).

    Google Scholar 

  22. G. P. Khokhlova, Ch. N. Barnakov, A. N. Popova, L. M. Khitsova, Keks i Khimiya [Coke and Chemistry], 2015, 58: 268–274 (in Russian).

    Google Scholar 

  23. C. Gómez-Navarro, R. Thomas Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett., 2007, 7: 3499–3503.

    Article  CAS  PubMed  Google Scholar 

  24. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, D. N. Krasikov, Usp. Fiz. Nauk [Physics-Uspekhi], 2011, 54: 227–259 (in Russian).

    Article  CAS  Google Scholar 

  25. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S-B. T. Nguyen, R. S. Ruoff, Carbon, 2007, 45: 1558–1565.

    Article  CAS  Google Scholar 

  26. Y. Huafeng, S. Changsheng, L. Fenghua, H. Dongxue, Z. Qixian, L. Niu, Chem. Commun., 2009, 26: 3880–3882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Ilkevich.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 0986–0990, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkevich, L.V., Tkachenko, T.B., Samarov, A.V. et al. Fabrication and physicochemical characterization of graphene oxide derived from thermally expanded graphite. Russ Chem Bull 67, 986–990 (2018). https://doi.org/10.1007/s11172-018-2168-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2168-6

Key words

Navigation