Skip to main content
Log in

Radiation-chemical processes leading to origination and accumulation of oxygen in the Earth’s atmosphere

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The role of natural radioactivity in the formation of the oxygen atmosphere of the Earth is discussed. The origination of oxygen in the free state in the hydrosphere and atmosphere is associated with the radiolysis of the water of the World ocean under the irradiation of radio active isotopes 40K, 235U, 238U, and 232Th. The calculations showed that within the last 3.8 billion years the total weight of oxygen, which could be formed due to this process, is about 7.4•1017 kg, i.е., the value of the same order as the oxygen content in the modern atmosphere of the Earth. The Ocean was an intermediate collector and provided the nucleation of new forms of biological life with oxygen respiration. The consecutive transformation of the Earth’s atmosphere with a gradual increase in the oxygen content became the result of photosynthesis in algae and green plants and thus opened a way to the origination of complicated forms of the life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Holland, Geochim. Cosmochim. Acta, 2002, 66: 3811.

    Article  CAS  Google Scholar 

  2. K. Zahnle, L. Schaefer, B. Fegley, Cold Spring Harb. Perspect. Biol., 2010, 2: 1.

    Article  CAS  Google Scholar 

  3. O. G. Sorokhtin, S. A. Ushakov, Razvitie Zemli [Development of the Earth], Izd-vo MGU, Moscow, 2002, 506 pp. (in Russian).

  4. H. D. Holland, Phil. Trans. R. Soc. B, 2006, 361: 903.

    Article  CAS  PubMed  Google Scholar 

  5. D. E. Canfield, Annu. Rev. Earth Planet. Sci., 2005, 33: 1.

    Article  CAS  Google Scholar 

  6. T. W. Lyons, C. T. Reinhard, N. J. Planavsky, Nature, 2014, 506: 307.

    Article  CAS  PubMed  Google Scholar 

  7. W. W. Rubey, Geol. Soc. Am., Spec. Pap., 1955, 62: 631.

    CAS  Google Scholar 

  8. A. Bar-Nun, S. Chang, J. Geophys. Res., 1983, 88: 6662.

    Article  CAS  Google Scholar 

  9. Z. Lu, Y. C. Chang, Q. Z. Yin, C. Y. Ng, W. M. Jackson, Science, 2014, 346: 61.

    Article  CAS  PubMed  Google Scholar 

  10. J. A. Schmidt, M. S. Johnson, R. Schinke, Proc. Natl. Acad. Sci. USA, 2013, 110: 17691.

    Article  PubMed  Google Scholar 

  11. G. A. Domrachev, Yu. L. Rodygin, D. A. Selivanovskii, Russ. J. Phys. Chem. A, 1992, 66: 832.

    Google Scholar 

  12. G. A. Domrachev, Yu. L. Rodygin, D. A. Selivanovskii, Dokl. Akad. Nauk [Dokl. Earth Sci. (Engl. Transl.), 1993, 329], 1993, 329: 186.

    CAS  Google Scholar 

  13. F. A. Letnikov, N. V. Sizykh, Dokl. Earth Sci., 2002, 386: 864.

    CAS  Google Scholar 

  14. The Chemistry of the Actinide Elements, Eds J. J. Katz, G. T. Seaborg, L. R. Morss, Chapman and Hall, London–New York, 1986, 186 pp.

  15. G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17: 513.

    Article  CAS  Google Scholar 

  16. B. G. Ershov, A. V. Gordeev, in Sovremennye Problemy Fizicheskoi Khimii [Modern Problems of Physical Chemistry], Granitsa, Moscow, 2005, 520 pp. (in Russian).

  17. B. G. Ershov, A. V. Gordeev, Radiat. Phys. Chem., 2008, 77: 928.

    Article  CAS  Google Scholar 

  18. B. G. Ershov, Russ. Chem. Rev., 2004, 73: 101.

    Article  CAS  Google Scholar 

  19. B. G. Ershov, M. Kelm, A. V. Gordeev, E. Janata, Phys. Chem. Chem. Phys., 2002, 4: 1872.

    Article  CAS  Google Scholar 

  20. B. G. Ershov, A. V. Gordeev, E. Janata, M. Kelm, Mendeleev Commun., 2001, 4: 149.

    Article  CAS  Google Scholar 

  21. B. G. Ershov, M. Kelm, E. Janata, A. V. Gordeev, Radiochem. Acta, 2002, 90: 617.

    Article  CAS  Google Scholar 

  22. C. J. Hochanadel, J. Phys. Chem., 1952, 56: 587.

    Article  CAS  Google Scholar 

  23. I. F. Vovk, Radiolizis Podzemnykh Vod i Ego Geokhimicheskaya Rol’ [Radiolysis of Underground Waters and Its Geochemical Role], Nedra, Moscow, 1979, 231 pp. (in Russian).

  24. I. G. Draganic, Rad. Phys. Chem., 2005, 72: 181.

    Article  CAS  Google Scholar 

  25. I. G. Draganic, E. Bjergbakke, Z. D. Draganic, K. Sehested, Precambrian Res. 1991, 52: 337.

    Article  CAS  Google Scholar 

  26. CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, CRC Press, Boca Raton, 2005, 14.

  27. V. I. Ferronsky, V. A. Polyakov, Isotopes of the Earth’s Hydrosphere, Springer+Business Media B, 2012, 399 pp.

  28. The Natural Fission Reactors, International Atomic Energy Agency, Vienna, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Ershov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 0958–0965, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, B.G., Grishina, M.M. & Shilov, V.P. Radiation-chemical processes leading to origination and accumulation of oxygen in the Earth’s atmosphere. Russ Chem Bull 67, 958–965 (2018). https://doi.org/10.1007/s11172-018-2164-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2164-x

Key words

Navigation