Russian Chemical Bulletin

, Volume 67, Issue 4, pp 636–646 | Cite as

Effect of the hyaluronidase microe nvironment on the enzyme structure–function relationship and computational study of the in silico molecular docking of chondroitin sulfate and heparin short fragments to hyaluronidase

  • A. V. MaksimenkoEmail author
  • R. Sh. Beabealashvili


The review addresses the biochemical interactions of hyaluronidases with components of the natural microenvironment. The effect of subtle structural differences between ligands on the enzyme structure–function relationship regulation is noted. Docking of chondroitin sulfate (CS) trimers (hexasaccharides) and heparin tetramers (octasaccharides) to the 3D model of the bovine testicular hyaluronidase (BTH) was performed by computational chemistry methods in order to elucidate the mechanism of regulation of the enzyme functioning in the body (using virtual screening, molecular dynamics, and calculation of surface electrostatic potential of protein complexes). Several binding sites for glycosaminoglycan (GAG) ligands were found to occur on the hyaluronidase surface. They are identical for CS trimers and heparin tetramers. The calculations showed the possibility of both reversible and irreversible conformational changes of the 3D structure of BTH, depending on the arrangement of negatively charged ligands on its globule. When the changes are irreversible, Glu-149 and Asp-147, which are key amino acid residues for the catalytic activity of BTH, can migrate from the vicinity of the native enzyme active site to the periphery of the protein molecule, thus inducing enzyme inactivation. The interaction of the GAG ligands with the BTH active site is mainly caused by electrostatic forces. Four or five binding sites of the chondroitin sulfate trimer proved to be critical for stabilization of the enzyme structure. Their occupation was sufficient for preventing irreversible deformation of the BTH molecule upon the insertion of the heparin ligand into the active site cavity. Protein stabilization is accompanied by the formation of a particular form of the surface electrostatic potential.

Key words

3D protein structure bovine testicular hyaluronidase chondroitin sulfate heparin glycosaminoglycan ligands docking molecular dynamics regulation of enzyme activity calculation of the surface electrostatic potential of the protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. C. Grant, M. B. Tessier, L. Meche, L. K. Mahal, B. L. Foley, R. J. Woods, Glycobiology, 2016, 26, 772; DOI: 10.1093/glycob/cww020.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    M. Agostino, N. S. Gandhi, R. L. Mancera, Glycobiology, 2014, 24,840.CrossRefPubMedGoogle Scholar
  3. 3.
    N. V. Sankaranarayanan, U. R. Desai, Glycobiology, 2014, 24, 1323.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    M. Jayakanthan, R. Jubendradass, S. C. D´Cruz, P. P. Mathur, Methods Mol. Biol., 2015, 1268,273.CrossRefPubMedGoogle Scholar
  5. 5.
    A. Maksimenko, A. Turashev, A. Fedorovich, A. Rogoza, E. Tischenko, J. Life Sci., 2013, 7,171.Google Scholar
  6. 6.
    A. V. Maksimenko, A. D. Turashev, R. S. Beabealashvili, Biochemistry (Moscow), 2015, 80,284.CrossRefGoogle Scholar
  7. 7.
    K. L. Chao, L. Muthukumar, O. Herzberg, Biochemistry, 2007, 46, 6911.CrossRefPubMedGoogle Scholar
  8. 8.
    K. S. Girish, K. Kemparaju, Biochemistry (Moscow), 2005, 70,948.CrossRefGoogle Scholar
  9. 9.
    T. Honda, T. Kaneiwa, S. Mizumoto, K. Sugahara, S. Yamada, Biomolecules, 2012, 2,549.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    F. Zhang, B. Walcott, D. Zhou, A. Gustchina, Y. Lasanajak, D. F. Smith, R. S. Fereira, M. T. S. Correia, P. M. G. Paiva, N. V. Bovin, A. Wlodawer, M. L. V. Oliva, R. J. Linhardt, Biochemistry, 2013, 52, 2148.CrossRefPubMedGoogle Scholar
  11. 11.
    V. K. Yadav, R. S. Mandal, B. L. Puniya, R. Kumar, S. Day, S. Singh, S. Yadav, Chem. Biol., Drug Des., 2015, 85,404.CrossRefGoogle Scholar
  12. 12.
    N. S. Gandhi, C. Freeman, C. R. Parish, R. L. Mancera, Glycobiology, 2012, 22,35.CrossRefPubMedGoogle Scholar
  13. 13.
    G. Jug, M. Anderluh, T. Tomasic, J. Mol. Model., 2015, 21, 164; DOI: 10.1007/s00894-015-2713-2.CrossRefPubMedGoogle Scholar
  14. 14.
    S. A. Samsonov, Y. Teyra, M. T. Pisabarro, J. Comput. Aided Mol. Des., 2011, 25,477.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    S. A. Samsonov, M. T. Pisabarro, Glycobiology, 2016, 26,850.CrossRefPubMedGoogle Scholar
  16. 16.
    L. Ballut, N. Sapay, E. Chautard, A. Imberty, S. Ricard-Blum, J. Mol. Recognit., 2013, 26,76.CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Tatara, I. Kakizaki, S. Suto, H. Ishioka, M. Negishi, M. Endo, Glycobiology, 2015, 25, 557; DOI: 10.1093/glycob/ cwu186.CrossRefPubMedGoogle Scholar
  18. 18.
    A. V. Maksimenko, Khim.-Farm. Zh. [Chem. Pharm. J.], 2008, 42, No. 10, 3 (in Russian).Google Scholar
  19. 19.
    A. V. Maksimenko, R. Sh. Beabealashvili, Kardiol. Vestnik [Bull. Cardiol.], 2016, XI, 70 (in Russian).Google Scholar
  20. 20.
    S. Batool, S. Ferdous, M. A. Kamal, H. Iftikhar, S. Rashid, Enz. Eng., 2013, 2, 1; DOI: 10.4172/eeg.1000106.Google Scholar
  21. 21.
    A. V. Maksimenko, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 2036.CrossRefGoogle Scholar
  22. 22.
    E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605.CrossRefPubMedGoogle Scholar
  23. 23.
    M. F. Sanner, A. J. Olson, J. C. Spehner, Biopolymers, 1996, 38,305.CrossRefPubMedGoogle Scholar
  24. 24.
    P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James, I. D. Kuntz, RNA, 2009, 15, 1219.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe, N. A. Baker, Nucleic Acids Res., 2007, 35, W522.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, N. A. Baker, Nucleic Acids Res., 2004, 32, W665.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. USA, 2001, 98, 10037.CrossRefPubMedGoogle Scholar
  28. 28.
    B. Honig, A. Nicholls, Science, 1995, 268, 1144.CrossRefPubMedGoogle Scholar
  29. 29.
    A. Nicholls, K. Sharp, B. Honig, Proteins, 1991, 11,281.CrossRefPubMedGoogle Scholar
  30. 30.
    I. Klapper, R. Hagstrom, R. Fine, B. Honig, Proteins, 1986, 1,47.CrossRefPubMedGoogle Scholar
  31. 31.
    N. Guex, M. C. Peitsch, Electrophoresis, 1997, 18, 2714.CrossRefPubMedGoogle Scholar
  32. 32.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem., 2005, 26, 1781.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    R. Concu, G. Podda, E. Uriarte, H. Gonzalez-Diaz, J. Comp. Chem., 2009, 30, 1510.CrossRefGoogle Scholar
  34. 34.
    J. Batra, H. Tjong, H.-X. Zhou, Prot. Eng. Des. Sel., 2016, 29,301.CrossRefGoogle Scholar
  35. 35.
    S. Sakkiah, M. Arooj, M. R. Kumar, S. H. Eom, K. W. Lee, PLoS One, 2013, 8, e51429; DOI: 10.1371/journal. pone.0051429.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    B. Wang, L. Li, T. D. Hurley, S.O. Meroneh, J. Chem. Inf. Model., 2013, 53, 2659.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Medical Research Center of CardiologyMinistry of Health of the Russian FederationMoscow, Russian FederationRussia

Personalised recommendations