Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 3, pp 461–468 | Cite as

New copper-containing catalysts based on modified amorphous silica and their use in flow azide—alkyne cycloaddition

  • V. A. BurilovEmail author
  • A. N. Nurmukhametova
  • R. N. Belov
  • D. A. Mironova
  • V. V. Vorob´ev
  • Yu. N. Osin
  • I. S. Antipin
Full Articles
  • 35 Downloads

Abstract

Сopper-containing catalysts supported on amorphous silica modified by amines were prepared using the chemical reduction method. The morphology of copper particles and their chemi calstate depend on the type of the reducing agent used. The use of ascorbic acid results in the formation of monodisperse submicron Cu0 particles 200—300 nm in size, whereas Cu0 particles with a size ranging from 50 to 150 nm are formed when hydrazine hydrate was used. The morphology and chemical state of the copper particles reduced with sodium borohydride depend substantially on the amount of the reducing agent: Cu0 nanoparticles 10—15 nm in size are formed if the reducing agent is an excess, layered Cu2O plates are formed at the equimolar amount of sodium borohydride, and a decrease in the amount of sodium borohydride results in spherical Cu2O particles. All the catalysts synthesized in the flow regime showed higher activity in the catalytic cycloaddition of azides to alkynes than the commercially available copper catalysts.

Key words

modified silica azide—alkyne cycloaddition reaction heterogeneous catalysis copper nanoparticles flow chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Ranu, R. Dey, T. Chatterjee, S. Ahammed, ChemSusChem, 2012, 5, 22.CrossRefPubMedGoogle Scholar
  2. 2.
    S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev., 2014, 43, 3525.CrossRefPubMedGoogle Scholar
  4. 4.
    K. S. Sindhu, G. Anilkumar, RSC Adv., 2014, 4, 27867.CrossRefGoogle Scholar
  5. 5.
    A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062.CrossRefGoogle Scholar
  6. 6.
    K. S. Sindhu, A. P. Thankachan, P. S. Sajitha, G. Anilkumar, Org. Biomol. Chem., 2015, 13, 6891.CrossRefPubMedGoogle Scholar
  7. 7.
    C. Maaliki, E. Thiery, J. Thibonnet, Eur. J. Org. Chem., 2017, 2017, 209.CrossRefGoogle Scholar
  8. 8.
    M. Meldal, C. W. Tornøe, Chem. Rev., 2008, 108, 2952.CrossRefPubMedGoogle Scholar
  9. 9.
    N. V. Sokolova, V. G. Nenajdenko, RSC Adv., 2013, 3, 16212.CrossRefGoogle Scholar
  10. 10.
    H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004.CrossRefGoogle Scholar
  11. 11.
    J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249.CrossRefPubMedGoogle Scholar
  12. 12.
    A. Y. Mitrofanov, A. V. Murashkina, I. Martín-García, F. Alonso, I. P. Beletskaya, Catal. Sci. Technol., 2017, 7, 4401.CrossRefGoogle Scholar
  13. 13.
    M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma, Chem. Rev., 2016, 116, 3722.CrossRefPubMedGoogle Scholar
  14. 14.
    F. Alonso, Y. Moglie, G. Radivoy, Acc. Chem. Res., 2015, 48, 2516.CrossRefPubMedGoogle Scholar
  15. 15.
    S. Ogasawara, Y. Hayashi, Synthesis, 2017, 49, 424.Google Scholar
  16. 16.
    B. C. Hamper, E. Tesfu, Synlett, 2007, 14, 2257.CrossRefGoogle Scholar
  17. 17.
    M. Dixit, M. Mishra, P. A. Joshi, D. O. Shah, Procedia Eng., 2013, 51, 467.CrossRefGoogle Scholar
  18. 18.
    R. Van den Berg, T. E. Parmentier, C. F. Elkjær, C. J. Gommes, J. Sehested, S. Helveg, P. E. De Jongh, K. P. De Jong, ACS Catal., 2015, 5, 4439.CrossRefGoogle Scholar
  19. 19.
    R. Ghahremanzadeh, Z. Rashid, A. H. Zarnani, H. Naeimi, J. Chem. Soc., Dalton Trans., 2014, 43, 15791.CrossRefGoogle Scholar
  20. 20.
    M. Biçer, I. Şişman, Powder Technol., 2010, 198, 279.CrossRefGoogle Scholar
  21. 21.
    W. Songping, M. Shuyuan, Mater. Lett., 2006, 60, 2438.CrossRefGoogle Scholar
  22. 22.
    C. Vázquez-Vázquez, M. Bañobre-López, A. Mitra, M. A. López-Quintela, J. Rivas, Langmuir, 2009, 25, 8208.CrossRefPubMedGoogle Scholar
  23. 23.
    M. R. Decan, S. Impellizzeri, M. L. Marin, J. C. Scaiano, Nat. Commun., 2014, 5, 4612.CrossRefPubMedGoogle Scholar
  24. 24.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Mouler, in Handbook ofX-Ray Photoelectron Spectroscopy, Ed. G. E. Muilenberg, Perkin Elmer Corporation, PhysicalElectronics Division, Eden Prairie, MN, 1979.Google Scholar
  25. 25.
    C. C. Chusuei, M. A. Brookshier, D. W. Goodman, Langmuir, 1999, 15, 2806.CrossRefGoogle Scholar
  26. 26.
    J. Ghijsen, L. Tjeng, J. Elp, H. Eskes, J. Westerink, G. Sawatzky, M. Czyzyk, Phys. Rev. B: Condens. Matter, 1988, 38, 11322.CrossRefGoogle Scholar
  27. 27.
    V. Andal, G. Buvaneswari, Eng. Sci. Technol. Int. J., 2017, 20, 340.CrossRefGoogle Scholar
  28. 28.
    A. K. Sasmal, S. Dutta, T. Pal, Dalton Trans., 2016, 45, 3139.CrossRefPubMedGoogle Scholar
  29. 29.
    C. Gómez-Lahoz, F. García-Herruzo, J. M. Rodríguez-Maroto, J. J. Rodríguez, Sep. Sci. Technol., 1992, 27, 1569.CrossRefGoogle Scholar
  30. 30.
    J. Ritschel, F. Sasse, M.E. Maier, Eur. J. Org. Chem., 2007, 2007, 78.CrossRefGoogle Scholar
  31. 31.
    CasaXPS: Processing Software for XPS, AES, SIMS and More, Version 2.3.18, 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Burilov
    • 1
    Email author
  • A. N. Nurmukhametova
    • 1
  • R. N. Belov
    • 1
  • D. A. Mironova
    • 1
  • V. V. Vorob´ev
    • 2
  • Yu. N. Osin
    • 2
  • I. S. Antipin
    • 1
  1. 1.A. M. Butlerov Chemical InstituteKazan (Volga Region) Federal UniversityKazanRussian Federation
  2. 2.Interdisciplinary Center for Analytical MicroscopyKazan (Volga Region) FederalUniversity KazanRussian Federation

Personalised recommendations