Skip to main content
Log in

Complexes of dichlorosilylene with allyl chloride and allyl bromide: matrix IR spectroscopy and quantum chemical studies

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Formation of donor-acceptor complexes between dichlorosilylene, SiCl2, and allyl halides, AllHal(Hal= Cl, Br) was detected in Ar matrixes using matrix IR spectroscopy. In agreement with the predictions of the performed quantum chemical calculations, only broad unstructured absorption bands contributed by different conformers of the 1 : 1 complexes between SiCl2 and AllHal were observed in IR spectra of matrixes after deposition in the regions of characteristic vibrations of starting reactants. Annealing of matrixes resulted in strong narrowing the bands due to conversions of different conformers into the most stable structures. The predominantly formed conformers in both the reaction systems were those of complexes with SiCl2 coordinated to the Hal atoms of AllHal in the gauche conformations. At the same time, according to the calculations, the complexes with SiCl2 coordination to the double bonds of AllHal can be only slightly less stable than the complexes with coordination to the Hal atoms, and all these basic centers can be considered as comparable in their activity in the complexation. The only products revealed upon photolysis of complexes were the products of silylene insertion into the C–Hal bonds, viz., AllSiCl3 and AllSiCl2Br. Theoretical study of thermal transformations in the SiCl2 + AllHal systems showed that formal insertion of SiCl2 in the C–Hal bonds and its addition to the double bonds of AllHal have low activation barriers of 3–8 kcal mol–1. However, these barriers are too high for these reactions to occur under the matrix isolation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tokitoh, W. Ando, in Reactive Intermediate Chemistry, Eds R. A. Moss, M. S. Platz, M. Jones, Jr., Wiley and Sons, New York, 2004, Ch. 14, pp. 651–715.

  2. P. P. Gaspar, R. West, in The Chemistry of Organic Silicon Compounds, Eds Z. Rappoport, Y. Apeloig, Wiley, Chichester, U.K., 1998, Vol. 2, pp. 2463–2568.

  3. W. H. Atwell, Organometallics, 2009, 28, 3573.

    Article  CAS  Google Scholar 

  4. P. Ho, W. G. Breiland, Appl. Phys. Lett., 1983, 43, 125 (and references cited therein).

    Article  CAS  Google Scholar 

  5. J. M. Jasinski, B. S. Meyerson, B. A. Scott, Annu. Rev. Phys. Chem., 1987, 38, 109.

    Article  CAS  Google Scholar 

  6. Y. Shi, Acc. Chem. Res., 2015, 48, 163.

    Article  CAS  PubMed  Google Scholar 

  7. B. Blom, M. Driess, in Structure and Bonding; FunctionalMolecular Silicon Compounds II: Low Oxidation States, Ed. D. Scheschkewitz, Springer Int. Publ., New York, 2014, Vol. 156, pp. 85–123.

    Article  CAS  Google Scholar 

  8. R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res., 2013, 46, 444.

    Article  CAS  PubMed  Google Scholar 

  9. M. Driess, Nat. Chem., 2012, 4, 525.

    Article  CAS  PubMed  Google Scholar 

  10. M. Asay, C. Jones, M. Driess, Chem. Rev., 2011, 111, 354.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev., 2009, 109, 3479.

    Article  CAS  PubMed  Google Scholar 

  12. M. Kosa, M. Karni, Y. Apeloig, J. Am. Chem. Soc., 2013, 135, 9032 (and references cited therein).

    Article  CAS  PubMed  Google Scholar 

  13. J. Belzner, H. Ihmels, Adv. Organomet. Chem., 1999, 43, 1.

    Article  Google Scholar 

  14. R. Becerra, R. Walsh, Phys. Chem. Chem. Phys., 2007, 9, 2817.

    Article  CAS  PubMed  Google Scholar 

  15. R. Becerra, R. Walsh, Dalton Trans., 2010, 39, 9217.

    Article  CAS  PubMed  Google Scholar 

  16. R. Becerra, S. E. Boganov, M. P. Egorov, I. V. Krylova, V. M. Promyslov, R. Walsh, J. Am. Chem. Soc., 2012, 134, 10493.

    Article  CAS  PubMed  Google Scholar 

  17. H. Bornemann, W. Sander, J. Organomet. Chem., 2002, 641, 156.

    Article  CAS  Google Scholar 

  18. G. Maier, J. Glatthaar, Eur. J. Org. Chem., 2003, 3350.

    Google Scholar 

  19. T. Tanaka, M. Ichinohe, A. Sekiguchi, Chem. Lett., 2004, 33, 1420.

    Article  CAS  Google Scholar 

  20. G. Maier, H. P. Reisenauer, J. Glatthaar, R. Zetzmann, Chem.-Asian J., 2006, 1, 195.

    Article  CAS  PubMed  Google Scholar 

  21. A. G. Moiseev, W. J. Leigh, Organometallics, 2007, 26, 6277.

    Article  CAS  Google Scholar 

  22. W. J. Leigh, S. S. Kostina, A. Bhattacharya, A. G. Moiseev, Organometallics, 2010, 29, 662.

    Article  CAS  Google Scholar 

  23. S. S. Kostina, T. Singh, W. J. Leigh, J. Phys. Org. Chem., 2011, 24, 937.

    Article  CAS  Google Scholar 

  24. S. S. Kostina, W. J. Leigh, J. Am. Chem. Soc., 2011, 133, 4377.

    Article  CAS  PubMed  Google Scholar 

  25. S. S. Kostina, T. Singh, W. J. Leigh, Organometallics, 2012, 31, 3755.

    Article  CAS  Google Scholar 

  26. F. Meyer-Wegner, A. Nadj, M. Bolte, N. Auner, M. Wagner, M. C. Holthausen, H.-W. Lerner, Chem.-Eur. J., 2011, 17, 4715.

    Article  CAS  PubMed  Google Scholar 

  27. M. B. Taraban, V. F. Plyusnin, O. S. Volkova, V. P. Grivin, T. V. Leshina, V. Ya. Lee, V. I. Faustov, M. P. Egorov, O. M. Nefedov, J. Phys. Chem., 1995, 99, 14719.

    Article  CAS  Google Scholar 

  28. M. B. Taraban, O. S. Volkova, V. F. Plyusnin, A. I. Kruppa, T. V. Leshina, M. P. Egorov, O. M. Nefedov, J. Phys. Chem. A, 2003, 107, 4096.

    Article  CAS  Google Scholar 

  29. G. Maier, J. Glatthaar, H. P. Reisenauer, J. Organomet. Chem., 2003, 686, 341.

    Article  CAS  Google Scholar 

  30. J. A. Boatz, M. S. Gordon, L. R. Sita, J. Phys. Chem., 1990, 94, 5488.

    Article  CAS  Google Scholar 

  31. S. Sakai, Int. J. Quantum Chem., 1998, 70, 291.

    Article  CAS  Google Scholar 

  32. M.-D. Su, Chem.-Eur. J., 2004, 10, 6073.

    Article  CAS  PubMed  Google Scholar 

  33. V. A. Svyatkin, A. K. Mal´tsev; O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1977, 26, 2072.

    Article  Google Scholar 

  34. A. V. Lalov, S. E. Boganov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull. (Int. Ed.), 2003, 52, 526 (and references cited therein).

    Article  CAS  Google Scholar 

  35. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 127, 124105 (and references cited therein).

    Article  CAS  PubMed  Google Scholar 

  36. L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys., 1999, 110, 4703.

    Article  CAS  Google Scholar 

  37. L. A. Curtiss, Gaussian-4 (G4) Theory. http://www.cse.anl. gov/OldCHMwebsiteContent/compmat/g4theory.htm.

  38. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.

    Article  CAS  Google Scholar 

  39. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.

    Article  CAS  Google Scholar 

  40. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.

    Article  CAS  Google Scholar 

  41. S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.

    Article  CAS  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    Google Scholar 

  43. J. R. Durig, D. T. Durig, B. J. van der Veken, W. A. Herrebout, J. Phys. Chem. A, 1999, 103, 6142 (and references cited therein).

    Article  CAS  Google Scholar 

  44. A. J. Barnes, S. Holroyd, Spectrochim. Acta, Part A, 1983, 39, 579.

    Article  Google Scholar 

  45. D. T. Durig, Z. Yu, J. Mol. Struct., 2000, 550.551, 481.

    Google Scholar 

  46. G. A. Ozin, J. Chem. Soc. A, 1969, 2952.

    Google Scholar 

  47. S. T. King, J. Chem. Phys., 1968, 49, 1321.

    Article  CAS  Google Scholar 

  48. F. Königer, A. Müller, W. J. Orville-Thomas, J. Mol. Struct., 1977, 37, 199.

    Article  Google Scholar 

  49. Y.-S. Li, N. E. Vecchio, Y. Wang, C. McNutt, Spectrochim. Acta, Part A, 2007, 67, 598.

    Article  CAS  Google Scholar 

  50. S. E. Boganov, V. M. Promyslov, I. V. Krylova, G. S. Zaitseva, M. P. Egorov, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 1216.

    Article  CAS  Google Scholar 

  51. A. Patyk, W. Sander, J. Gauss, D. Cremer, Chem. Ber., 1990, 123, 89.

    Article  CAS  Google Scholar 

  52. G. Maier, H. P. Reisenauer, B. Rohde, K. Dehnicke, Chem. Ber., 1983, 116, 732.

    Article  CAS  Google Scholar 

  53. A. K. Mal´tsev, V. A. Korolev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1984, 33, 510.

    Article  Google Scholar 

  54. K. Holtzhauer, C. Cometta-Morini, J. F. M. Oth, J. Phys. Org. Chem., 1990, 3, 219.

    Article  CAS  Google Scholar 

  55. J. W. Huang, W. R. M. Graham, J. Chem. Phys., 1990, 93, 1583.

    Article  CAS  Google Scholar 

  56. S. Nandi, P. A. Arnold, B. K. Carpenter, M. R. Nimlos, D. C. Dayton, G. B. Ellison, J. Phys. Chem. A, 2001, 105, 7514.

    Article  CAS  Google Scholar 

  57. D. Maillard, A. Schriver, J. P. Perchard, C. Girardet, J. Chem. Phys., 1979, 71, 505.

    Article  CAS  Google Scholar 

  58. M. E. Jacox, D. E. Milligan, Chem. Phys., 1974, 4, 45.

    Article  CAS  Google Scholar 

  59. M.-C. Liu, S.-C. Chen, C.-H. Chin, T.-P. Huang, H.-F. Chen, Y.-J. Wu, J. Phys. Chem. Lett., 2015, 6, 3185.

    Article  CAS  Google Scholar 

  60. A. Engdahl, B. Nelander, Chem. Phys. Lett., 1983, 100, 129.

    Article  CAS  Google Scholar 

  61. L. Manceron, L. Andrews, J. Am. Chem. Soc., 1985, 107, 563.

    Article  CAS  Google Scholar 

  62. E. S. Kline, Z. H. Kafafi, R. H. Hauge, J. L. Margrave, J. Am. Chem. Soc., 1987, 109, 2402.

    Article  CAS  Google Scholar 

  63. S. Suzer, L. Andrews, J. Phys. Chem., 1989, 93, 2123.

    Article  CAS  Google Scholar 

  64. K. V. J. Jose, S. R. Gadre, K. Sundararajan, K. S. Viswanathan, J. Chem. Phys., 2007, 127, 104501.

    Article  CAS  PubMed  Google Scholar 

  65. D. W. Ball, R. G. S. Pong, Z. H. Kafafi, J. Phys. Chem., 1994, 98, 10720.

    Article  CAS  Google Scholar 

  66. A. J. Barnes, J. D. R. Howells, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 532.

    Article  CAS  Google Scholar 

  67. E. Rytter, D. M. Gruen, Spectrochim. Acta, Part A, 1979, 35, 199.

    Article  Google Scholar 

  68. M.-L. H. Jeng, B. S. Ault, Inorg. Chem., 1990, 29, 837.

    Article  CAS  Google Scholar 

  69. A. E. Shirk, J. S. Shirk, J. Mol. Spectrosc., 1982, 92, 218.

    Article  CAS  Google Scholar 

  70. M. E. Jacox, D. E. Milligan, J. Chem. Phys., 1968, 49, 3130.

    Article  CAS  Google Scholar 

  71. V. A. Korolev, A. K. Mal´tsev, O. M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1989, 38, 957.

    Article  Google Scholar 

  72. E. B. Jochnowitz, X. Zhang, M. R. Nimlos, M. E. Varner, J. F. Stanton, G. B. Ellison, J. Phys. Chem. A, 2005, 109, 3812.

    Article  CAS  PubMed  Google Scholar 

  73. R. Becerra, J. P. Cannady, R. Walsh, J. Phys. Chem. A, 2006, 110, 6680.

    Article  CAS  PubMed  Google Scholar 

  74. M.-D. Su, Chem. Phys. Lett., 2003, 374, 385.

    Article  CAS  Google Scholar 

  75. S. E. Boganov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull. (Engl. Transl.), 1998, 47, 1054.

    Article  CAS  Google Scholar 

  76. D. Tevault, K. Nakamoto, Inorg. Chem., 1976, 15, 1282.

    Article  CAS  Google Scholar 

  77. T. C. McInnis, L. Andrews, J. Phys. Chem., 1992, 96, 5276.

    Article  CAS  Google Scholar 

  78. K. R. Pichaandi, J. T. Mague, M. J. Fink, J. Organomet. Chem., 2015, 791, 163 (and references cited therein).

    Article  CAS  Google Scholar 

  79. J. Karolczak, D. J. Clouthier, Chem. Phys. Lett., 1993, 201, 409.

    Article  CAS  Google Scholar 

  80. H. Shen, J. Chen, L. Hua, B. Zhang, J. Phys. Chem. A, 2014, 118, 4444.

    Article  CAS  PubMed  Google Scholar 

  81. L. Ji, Y. Tang, R. Zhu, Z. Wei, B. Zhang, J. Chem. Phys., 2006, 125, 164307.

    Article  CAS  PubMed  Google Scholar 

  82. G. R. Gillette, G. H. Noren, R. West, Organometallics, 1989, 8, 487.

    Article  CAS  Google Scholar 

  83. P. P. Gaspar, in Reactive Intermediates, Eds. M. Jones, Jr., R. A. Moss, Wiley-Interscience, New York, 1985, Vol. 3, Chapter 9, pp. 333–427.

  84. W. P. Neumann, Chem. Rev., 1991, 91, 311.

    Article  CAS  Google Scholar 

  85. W. Ando, H. Itoh, T. Tsumuraya, Organometallics, 1989, 8, 2759.

    Article  CAS  Google Scholar 

  86. T. Bally, in Reactive Intermediate Chemistry, Eds R. A. Moss, M. S. Platz, M. Jones, Jr., Wiley and Sons, New York, 2004, Ch. 17, pp. 797–845.

  87. I. Fernández, F. M. Bickelhaupt, J. Comput. Chem., 2012, 33, 509 (and references cited therein).

    Article  CAS  PubMed  Google Scholar 

  88. D. Hack, M. Blümel, P. Chauhan, A. R. Philipps, D. Enders, Chem. Soc. Rev., 2015, 44, 6059 (and references cited therein).

    Article  CAS  PubMed  Google Scholar 

  89. Y. Ge, M. S. Gordon, F. Battaglia, R. O. Fox, J. Phys. Chem. A, 2007, 111, 1475 (and references cited therein).

    Article  CAS  PubMed  Google Scholar 

  90. M. S. Gordon, W. Nelson, Organometallics, 1995, 14, 1067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Boganov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0425–0443, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boganov, S.E., Promyslov, V.M., Rynin, S.S. et al. Complexes of dichlorosilylene with allyl chloride and allyl bromide: matrix IR spectroscopy and quantum chemical studies. Russ Chem Bull 67, 425–443 (2018). https://doi.org/10.1007/s11172-018-2089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2089-4

Key words

Navigation