Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2173–2179 | Cite as

Differences in reactivity of N-acetyl- and N,N-diacetylsialyl chlorides caused by their different supramolecular organization in solutions

  • A. V. Orlova
  • T. V. Laptinskaya
  • N. V. Bovin
  • L. O. Kononov
Full Article

Abstract

O-Sialylation of a substituted indolin-3-one under phase-transfer catalysis conditions, which does not occur when N-acetylsialyl chloride is used, proceeds with N,N-diacetylsialyl chloride as the glycosyl donor. A study using dynamic light scattering of solutions of both sialyl chlorides under conditions close to the conditions used for glycosylation showed a difference in the correlation radii of light scattering particles in such solutions. This suggests that the introduction of an additional N-acetyl group into the sialyl chloride significantly alters the structure of the supramers of glycosyl donor, which apparently have an increased accessibility of individual molecules for the attack by a nucleophile, which increases its reactivity.

Key words

N,N-diacetylsialyl chloride sialylation dynamic light scattering chromogenic substrates phase-transfer catalysis mesoscale particles supramers solution structure reactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Schauer, in Carbohydrates: Chemistry and Biology, Eds B. Ernst, G. W. Hart, P. Sinay, Wiley-VCH, Weinheim, 2000, p. 227–244.Google Scholar
  2. 2.
    T. Angata, A. Varki, Chem. Rev., 2002, 102, 439–469 (DOI: 10.1021/cr000407m).CrossRefGoogle Scholar
  3. 3.
    A. Varki, Nature, 2007, 446, 1023–1029 (DOI: 10.1038/nature05816).CrossRefGoogle Scholar
  4. 4.
    A. Varki, Trends Mol. Med., 2008, 14, 351–360 (DOI: 10.1016/j.molmed.2008.06.002).CrossRefGoogle Scholar
  5. 5.
    R. Schauer, Curr. Opin. Struct. Biol., 2009, 19, 507–514 (DOI: 10.1016/j.sbi.2009.06.003).CrossRefGoogle Scholar
  6. 6.
    X. Chen, A. Varki, ACS Chem. Biol., 2010, 5, 163–176 (DOI: 10.1021/cb900266r).CrossRefGoogle Scholar
  7. 7.
    A. Varki, P. Gagneux, Ann. New York Acad. Sci., 2012, 1253, 16–36 (DOI: 10.1111/j.1749-6632.2012.06517.x).CrossRefGoogle Scholar
  8. 8.
    L. Deng, X. Chen, A. Varki, Biopolymers, 2013, 99, 650–665 (DOI: 10.1002/bip.22314).CrossRefGoogle Scholar
  9. 9.
    C. Navuluri, D. Crich, in Glycochemical Synthesis: Strategies and Applications, Eds S.-C. Hung, M. M. L. Zulueta, John Wiley & Sons, Inc., Hoboken, 2016, p. 131–154.Google Scholar
  10. 10.
    B. Sun, Curr. Org. Chem., 2016, 20, 1465–1476 (DOI: 10.2174/138527282014160419234226).CrossRefGoogle Scholar
  11. 11.
    Y.-H. Lih, C.-Y. Wu, in Selective Glycosylations: Synthetic Methods and Catalysts, Ed. C. S. Bennett, Wiley-VCH Verlag GmbH & Co. KGaA, 2017, p. 353–370.Google Scholar
  12. 12.
    I. Fujii, Y. Iwabuchi, T. Teshima, T. Shiba, M. Kikuchi, Bioorg. Med. Chem., 1993, 1, 147–149 (DOI: 10.1016/s0968-0896(00)82112-4).CrossRefGoogle Scholar
  13. 13.
    J. A. Kiernan, Biotech. Histochem., 2007, 82, 73–103 (DOI: 10.1080/10520290701375278).CrossRefGoogle Scholar
  14. 14.
    M. Saito, H. Hagita, Y. Iwabuchi, I. Fujii, K. Ikeda, M. Ito, Histochem. Cell Biol., 2002, 117, 453-8 (DOI: 10.1007/s00418-002-0399-x).CrossRefGoogle Scholar
  15. 15.
    A. Minami, H. Shimizu, Y. Meguro, N. Shibata, H. Kanaza-wa, K. Ikeda, T. Suzuki, Neuroimage, 2011, 58, 34–40 (DOI: 10.1016/j.neuroimage.2011.06.017).CrossRefGoogle Scholar
  16. 16.
    V. Eschenfelder, R. Brossmer, Glycoconjugate J., 1987, 4, 171–178 (DOI: 10.1007/bf01049454).CrossRefGoogle Scholar
  17. 17.
    A. Liav, J. A. Hansjergen, K. E. Achyuthan, C. D. Shi-masaki, Carbohydr. Res., 1999, 317, 198–203 (DOI: 10.1016/s0008-6215(99)00058-0).CrossRefGoogle Scholar
  18. 18.
    S. C. Johnson, A. Saeed, M. Luo, 2005, US Pat. US6844346B2.Google Scholar
  19. 19.
    V. Reukov, A. Vertegel, O. Burtovyy, K. Kornev, I. Luzi-nov, P. Miller, Materials Science and Engineering: C, 2009, 29, 669–673 (DOI: 10.1016/j.msec.2008.11.016).CrossRefGoogle Scholar
  20. 20.
    X. Lei, C. Zhu, H. Guo, X. Wang, W. Hu, F. Wang, W. Li, Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese Universities), 2017, 38, 398–402 (DOI: 10.7503/cjcu20160811).Google Scholar
  21. 21.
    S. Bottcher, M. Hederos, E. Champion, G. Dekany, J. Thi-em, Org. Lett., 2013, 15, 3766–3769, DOI: 10.1021/ol401710a).CrossRefGoogle Scholar
  22. 22.
    R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber., 1966, 252, 611–617 (DOI: 10.1002/cber.19660990235).CrossRefGoogle Scholar
  23. 23.
    M. N. Sharma, R. Eby, Carbohydr. Res., 1984, 127, 201–210 (DOI: 10.1016/0008-6215(84)85354-9).CrossRefGoogle Scholar
  24. 24.
    N. E. Byramova, A. B. Tuzikov, N. V. Bovin, Carbohydr. Res., 1992, 237, 161–175 (DOI: 10.1016/S0008-6215(92)84240-S).CrossRefGoogle Scholar
  25. 25.
    L. O. Kononov, G. Magnusson, Acta Chem. Scand., 1998, 52, 141–144 (DOI: 10.3891/acta.chem.scand.52-0141).CrossRefGoogle Scholar
  26. 26.
    A. M. Shpirt, L. O. Kononov, V. I. Torgov, V. N. Shibaev, Russ. Chem. Bull., 2004, 53, 717–719 (DOI: 10.1023/b:rucb.0000035663.15439.84).CrossRefGoogle Scholar
  27. 27.
    N. Y. Kulikova, A. M. Shpirt, A. Chinarev, L. O. Kononov, in Carbohydrate Chemistry: Proven Synthetic Methods. Vol. 1,Ed. P. Kovac, CRC Press-Taylor & Francis Group, Boca Raton, 2012, p. 245–250.Google Scholar
  28. 28.
    A. V. Orlova, A. M. Shpirt, N. Y. Kulikova, L. O. Kononov, Carbohydr. Res., 2010, 345, 721–730 (DOI: 10.1016/j.carres.2010.01.005).CrossRefGoogle Scholar
  29. 29.
    A. Haikal, Coll. Czech. Chem. Commun., 1996, 61, 427–431 (DOI: 10.1135/cccc19960427).CrossRefGoogle Scholar
  30. 30.
    T. Ercegovic, U. J. Nilsson, G. Magnusson, Carbohydr. Res., 2001, 331, 255–263.CrossRefGoogle Scholar
  31. 31.
    K. Okamoto, T. Kondo, T. Goto, Bull. Chem. Soc. Jpn., 1987, 60, 631–636 (DOI: 10.1246/bcsj.60.631).CrossRefGoogle Scholar
  32. 32.
    N. Y. Kulikova, A. M. Shpirt, L. O. Kononov, Synthesis, 2006, 4113—4114 (DOI: 10.1055/s-2006-950354).Google Scholar
  33. 33.
    A. V. Demchenko, G.-J. Boons, Tetrahedron Lett., 1998, 39, 3065–3068 (DOI: 10.1016/s0040-4039(98)00359-1).CrossRefGoogle Scholar
  34. 34.
    A. V. Demchenko, G.-J. Boons, Chem.-Eur. J., 1999, 5, 1278–1283 (DOI: 10.1002/(SICI)1521—3765(19990401) 5:4<1278::AID-CHEM1278>3.0.CO;2-L).CrossRefGoogle Scholar
  35. 35.
    J. Z. Zhou, Y. Manabe, K. Tanaka, K. Fukase, Chem.-Asian J., 2016, 11, 1436–1440 (DOI: 10.1002/asia.201600139).CrossRefGoogle Scholar
  36. 36.
    M. Nagasaki, Y. Manabe, N. Minamoto, K. Tanaka, A. Silipo, A. Molinaro, K. Fukase, J. Org. Chem., 2016, 81, 10600–10616 (DOI: 10.1021/acs.joc.6b02106).CrossRefGoogle Scholar
  37. 37.
    L. O. Kononov, RSC Adv., 2015, 5, 46718–46734 (DOI: 10.1039/c4ra17257d).CrossRefGoogle Scholar
  38. 38.
    L. O. Kononov, D. E. Tsvetkov, A. V. Orlova, Russ. Chem. Bull., 2002, 51, 1337–1338 (DOI: 10.1023/a:1020981320040).CrossRefGoogle Scholar
  39. 39.
    L. O. Kononov, N. N. Malysheva, E. G. Kononova, O. G. Garkusha, Russ. Chem. Bull., 2006, 55, 1311–1313 (DOI: 10.1007/s11172-006-0419-4).CrossRefGoogle Scholar
  40. 40.
    A. V. Orlova, L. Kononov, B. G. Kimel, I. B. Sivaev, V. I. Bregadze, Appl. Organomet. Chem., 2006, 20, 416–420 (DOI: 10.1002/aoc.1082).CrossRefGoogle Scholar
  41. 41.
    L. O. Kononov, N. N. Malysheva, E. G. Kononova, A. V. Orlova, Eur. J. Org. Chem., 2008, 3251—3255 (DOI: 10.1002/ejoc.200800324).Google Scholar
  42. 42.
    L. O. Kononov, N. N. Malysheva, A. V. Orlova, Eur. J. Org. Chem., 2009, 611—616 (DOI: 10.1002/ejoc.200801017).Google Scholar
  43. 43.
    L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zi-nin, T. V. Laptinskaya, E. G. Kononova, N. G. Kolotyrki-na, Eur. J. Org. Chem., 2012, 1926—1934 (DOI: 10.1002/ejoc.201101613).Google Scholar
  44. 44.
    L. O. Kononov, in Advances in Chemistry Research, Ed. J. C. Taylor, Nova Science Publishers, Inc., Hauppauge, NY, 2013, p. 143–178.Google Scholar
  45. 45.
    A. V. Orlova, R. R. Andrade, C. O. da Silva, A. I. Zinin, L. O. Kononov, ChemPhysChem, 2014, 15, 195–207 (DOI: 10.1002/cphc.201300894).CrossRefGoogle Scholar
  46. 46.
    A. V. Orlova, A. I. Zinin, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 295–297 (DOI: 10.1007/s11172-014-0429-6).CrossRefGoogle Scholar
  47. 47.
    P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov, L. O. Konon-ov, Carbohydr. Res., 2014, 396, 25–36 (DOI: 10.1016/j.carres.2014.05.017).CrossRefGoogle Scholar
  48. 48.
    L. O. Kononov, K. G. Fedina, A. V. Orlova, N. N. Konda-kov, P. I. Abronina, N. M. Podvalnyy, A. O. Chizhov, Carbohydr. Res., 2017, 437, 28–35 (DOI: 10.1016/j.carres.2016.11.009).CrossRefGoogle Scholar
  49. 49.
    D. A. Ahiadorme, N. M. Podvalnyy, A. V. Orlova, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2016, 65, 2776–2778 (DOI: 10.1007/s11172-016-1654-y).CrossRefGoogle Scholar
  50. 50.
    N. M. Podvalnyy, N. N. Malysheva, M. V. Panova, A. I. Zinin, A. O. Chizhov, A. V. Orlova, L. O. Kononov, Carbohydr. Res., 2017, 451, 12–28 (DOI: 10.1016/j.carres.2017.09.002).CrossRefGoogle Scholar
  51. 51.
    M. Sedlák, J. Phys. Chem. B, 2006, 110, 4329–4338 (DOI: 10.1021/jp0569335).CrossRefGoogle Scholar
  52. 52.
    M. Sedlák, J. Phys. Chem. B, 2006, 110, 4339–4345 (DOI: 10.1021/jp056934x).CrossRefGoogle Scholar
  53. 53.
    M. Sedlák, J. Phys. Chem. B, 2006, 110, 13976–13984 (DOI: 10.1021/jp061919t).CrossRefGoogle Scholar
  54. 54.
    M. Sedlák, D. Rak, J. Phys. Chem. B, 2014, 118, 2726–2737 (DOI: 10.1021/jp500953m).CrossRefGoogle Scholar
  55. 55.
    D. Subramanian, J. B. Klauda, P. J. Collings, M. A. Anisi-mov, J. Phys. Chem. B, 2014, 118, 5994–6006 (DOI: 10.1021/jp4125183).CrossRefGoogle Scholar
  56. 56.
    G. B. Manelis, G. V. Lagodzinskaya, A. I. Kazakov, A. V. Chernyak, N. G. Yunda, L. S. Kurochkina, Russ. Chem. Bull., 2013, 62, 994–1002 (DOI: 10.1007/s11172-013-0130-1).CrossRefGoogle Scholar
  57. 57.
    G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, L. S. Kurochkina, G. B. Manelis, Russ. Chem. Bull., 2016, 65, 984–992 (DOI: 10.1007/s11172-016-1401-4).CrossRefGoogle Scholar
  58. 58.
    D. Hagmeyer, J. Ruesing, T. Fenske, H. W. Klein, C. Schmuck, W. Schrader, M. E. M. da Piedade, M. Epple, RSC Adv., 2012, 2, 4690–4696 (DOI: 10.1039/c2ra01352e).CrossRefGoogle Scholar
  59. 59.
    A. Jawor-Baczynska, B. D. Moore, H. S. Lee, A. V. McCormick, J. Sefcik, Faraday Discuss., 2013, 167, 425–440 (DOI: 10.1039/c3fd00066d).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A. V. Orlova
    • 1
  • T. V. Laptinskaya
    • 2
  • N. V. Bovin
    • 3
  • L. O. Kononov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations