Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2073–2080 | Cite as

Control of the properties of catalysts for methane aromatization by synthesizing ZSM-5 zeolites with different crystallite sizes

  • S. A. Mikhaylov
  • N. A. Mamonov
  • L. M. Kustov
  • M. N. Mikhaylov
Full Article


MFI zeolite materials (ZSM-5) with crystal sizes in the range from 0.10 to 1.70 μm have been synthesized. Acidic and surface properties, phase and morphological composition of the prepared zeolites have been studied by the IR sprectroscopy, nitrogen porosimetry, XRD, and scanning electron microscopy. Increasing crystal size was shown to decrease the general acidity of the zeolite. Synthesized zeolites served as supports for molybden-containing catalysts for methane aromatization prepared by using the solid phase synthesis approach. Diffuse reflectance IR spectroscopy, thermoprogrammed desoption of ammonia and 27Al NMR spectroscopy were used to characterize the physicochemical properties of the catalysts. An increase in the crystallite size of the zeolite favors a decrease in the acidity of the catalysts and inhibits the formation of alumina molybdate during the catalyst preparation. As a result, a tendency to coke formation is suppressed and the performance of the catalysts in methane aromatization improved: methane conversion and aromatic hydrocarbon yield increase.

Key words

methane aromatization molibden zeolite IR spectroscopy thermoprogrammed desorption of ammonia acidity X-ray diffraction scanning electron microscopy crystal size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Davis, Nature, 2002, 417, 813.CrossRefGoogle Scholar
  2. 2.
    S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, J. Energy Chem., 2013, 1, 22Google Scholar
  3. 3.
    H. Tao, C. Li, J. Ren, Y. Wang, J. Solid State Chem., 2011, 184, 1820.CrossRefGoogle Scholar
  4. 4.
    R. Ohnishi, S. Liu, Q. Dong, J. Catal., 1999, 92, 182.Google Scholar
  5. 5.
    M. A. Camblor, A. Corma, S. Valencia, Microporous Meso-porous Mater., 1998, 1, 59.CrossRefGoogle Scholar
  6. 6.
    M. A. Camblor, A. Corma, A. Martínez, F. A. Mocholi, J. Pe res-Pariente, Appl. Catal. A., 1989, 55, 65.CrossRefGoogle Scholar
  7. 7.
    Y. Cui, Y. Xu, J. Lu, Appl. Catal. A: General, 2011, 393, 348.CrossRefGoogle Scholar
  8. 8.
    L. Su, H. Zhang, X. Wang, J. Zhuang, Y. Xu, X. Bao, Chin. J. Catal., 2003, 24, 284.Google Scholar
  9. 9.
    W. Zhang, D. Ma, X. Han, X. Liu, X. Bao, X. Guo, X. Wang, J. Catal., 1999, 188, 393.CrossRefGoogle Scholar
  10. 10.
    L. M. Kustov, Topics Catal., 1997, 4, 131.CrossRefGoogle Scholar
  11. 11.
    M. Conte, B. Xu, T. E. Davies, Microporous Mesoporous Mater., 2012, 164, 207.CrossRefGoogle Scholar
  12. 12.
    L. M. Kovba, B. K. Trunov, Rentgenofazovyi analyz [X-ray Diffraction Analyses], MSU, Moscow, 1976, p. 149.Google Scholar
  13. 13.
    Y. Shu, D. Ma, L. Xu, Catal. Lett., 2000, 70, 67.CrossRefGoogle Scholar
  14. 14.
    G. I. Kapustin, T. R. Brueva, A. L. Klyachko, Appl. Catal., 1988, 42, 239.CrossRefGoogle Scholar
  15. 15.
    H. Liu, X. Bao, Y. Xu, J. Catal., 2006, 239, 441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • S. A. Mikhaylov
    • 1
    • 2
  • N. A. Mamonov
    • 2
  • L. M. Kustov
    • 1
  • M. N. Mikhaylov
    • 1
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.LLC «RN-RDC»MoscowRussian Federation

Personalised recommendations