Skip to main content

Photo-induced reduction of Cr6+ by the hybrid systems “CuII complex with Schiff base and TiO2”: dependence on irradiation wavelength

Abstract

The synthesis of novel CuII complexes with a Schiff base obtained by condensation of salicylaldehyde and an l-aspartic acid ester are described. The physicochemical properties of the complexes were compared with those of related CuII complexes obtained earlier. All the complexes studied were characterized by elemental analysis as well as by IR, UV-Vis, and EPR spectroscopies. The activity of the complexes and their hybrid systems (HS) with TiO2 in visible-light-driven photocatalysis in organic solvents was investigated. After irradiation with visible light, the complexes and corresponding HS reduce Cr6+ to Cr3+ more efficiently than bare TiO2. To determine the molecular orbital compositions and energies and to explain the electronic spectra and redox properties of the systems studied, density functional calculations of the optimized structures of representative model complexes were performed.

This is a preview of subscription content, access via your institution.

References

  1. L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B., 1998, 17, 267.

    CAS  Article  Google Scholar 

  2. R. M. Powell, R. W. Puls, R. K. Hightower, D. A. Sabatini, Environ. Sci. Technol., 1995, 29, 1913.

    CAS  Article  Google Scholar 

  3. B. Deng, A.T. Stone, Environ. Sci. Technol., 1996, 30, 463.

    CAS  Article  Google Scholar 

  4. S. J. Hug, H.-U. Laubscher, B. R. James, Environ. Sci. Technol., 1997, 31, 160.

    CAS  Article  Google Scholar 

  5. P. R. Wittbrodt, C. D. Palmer, Environ. Sci. Technol., 1995, 29, 255.

    CAS  Article  Google Scholar 

  6. M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Appl. Catal. A, 2007, 325, 1.

    CAS  Article  Google Scholar 

  7. G. Jing, L. Ying, D. Runan, L. Yeqing, J. Hazard. Mater., 2012, 243, 265.

    Article  Google Scholar 

  8. G. Lee, J. Park, O. R. Harvey, Water Res., 2013, 47, 1136.

    CAS  Article  Google Scholar 

  9. H. Kyung, J. Lee, W. Choi, Environ. Sci. Technol., 2005, 39, 2376.

    CAS  Article  Google Scholar 

  10. R. A. Aziz, I. Sopyan, Recent Pat. Mater. Sci., 2009, 2, 88.

    CAS  Article  Google Scholar 

  11. S. Protti, A. Albini, N. Serpone, Phys. Chem. Chem. Phys., 2014, 16, 19790.

    CAS  Article  Google Scholar 

  12. C. L. Bianchi, C. Pirola, F. Galli, M. Stucchi, S. Morandi, G. Cerrato, V. Capucci, RSC Adv., 2015, 5, 53419.

    CAS  Article  Google Scholar 

  13. R. Nagarjuna, S. Challagulla, R. Ganesan, S. Roy, Chem. Eng. J., 2017, 308, 59.

    CAS  Article  Google Scholar 

  14. B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, RSC Adv., 2014, 4, 12685.

    CAS  Article  Google Scholar 

  15. B. A. Marinho, R. O. Cristуvгo, J. M. Loureiro, R. A. R. Boaventura, V. J. P. Vilar, Appl. Catal., B, 2016, 192, 208.

    CAS  Article  Google Scholar 

  16. T. Akitsu, Y. Ishiguro, S. Yamamoto, H. Nishizuru, Asian Chem. Lett., 2010, 14, 63.

    CAS  Google Scholar 

  17. T. Akitsu, H. Nishizuru, Asian Chem. Lett., 2010, 14, 261.

    Google Scholar 

  18. T. Nakayama, M. Minemoto, H. Nishizuru, T. Akitsu, Asian Chem. Lett., 2011, 15, 215.

    Google Scholar 

  19. H. Nishizuru, N. Kimura, T. Akitsu, Asian Chem. Lett., 2012, 16, 33.

    Google Scholar 

  20. M. Kurata, N. Yoshida, S. Fukunaga, T. Akitsu, Contemp. Eng. Sci., 2013, 6, 255.

    CAS  Article  Google Scholar 

  21. Y. Takeshita, A. Nogami, T. Akitsu, World Sci. Echo, 2014, 1, 20.

    Google Scholar 

  22. Y. Takeshita, K. Takakura, T. Akitsu, Int. J. Molec. Sci., 2015, 16, 3955.

    CAS  Article  Google Scholar 

  23. N. Yoshida, T. Akitsu, in Samarium, Chemical Properties, Occurrence and Potential Applications, Ed. K. R. Danford, Nova Sci. Publ., Inc., New York, 2014, p. 95.

  24. N. Yoshida, T. Akitsu, in Integrating Approach to Photofunc-tional Hybrid Materials for Energy and the Environment, Ed. T. Akifsu, Nova Sci. Publ., Inc., New York, 2013, p. 111.

  25. J. Krätsmár-Šmogrovi, F. Pavelik, J. Soldánová, J. Sivy, V. Seressová, M. emlika, Z. Naturforsch., B: J. Chem. Sci., 1991, 46, 1323.

    Google Scholar 

  26. N. A. Malakhova, A. V. Chernysheva, K. I. Brainina, Electroanalysis, 1991, 3, 691.

    CAS  Article  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fuku-da, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Mar-tin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salva-dor, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Far-kas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  28. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    CAS  Article  Google Scholar 

  29. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    CAS  Article  Google Scholar 

  30. C. Adamo, M. Cossi, V. Barone, J. Mol. Struct.: THEOCHEM, 1999, 493, 145.

    CAS  Article  Google Scholar 

  31. M. Ernzerhof, G. Scuseria, J. Chem. Phys., 1999, 110, 5029.

    CAS  Article  Google Scholar 

  32. G. A. Shamov, G. Schreckenbach, J. Phys. Chem. A, 2005, 109, 10961.

    CAS  Article  Google Scholar 

  33. K. Raghavachari, G. W. Trucks, J. Chem. Phys., 1989, 91, 1062.

    Article  Google Scholar 

  34. L. E. Roy, E. Jakubikova, M. G. Guthrie, E. R. Batista, J. Phys. Chem. A, 2009, 113, 6745.

    CAS  Article  Google Scholar 

  35. S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55, 117.

    CAS  Google Scholar 

  36. R. Cammi, J. Tomasi, J. Comput. Chem., 1995, 16, 1449.

    CAS  Article  Google Scholar 

  37. A. Trujillo, M. Fuentealba, D. Carrillo, C. Manzur, I. Ledoux-Rak, J.-R. Hamon, J.-Y. Saillard, Inorg. Chem., 2010, 49, 2750.

    CAS  Article  Google Scholar 

  38. R. Jono, M. Sumita, Y. Tateyama, K. Yamashita, J. Phys. Chem. Lett., 2012, 3, 3581.

    CAS  Article  Google Scholar 

  39. Y. Takeshita, K. Takakura, T. Akitsu, Int. J. Mol. Sci., 2015, 16, 3955.

    CAS  Article  Google Scholar 

  40. M.-H. Baik, R. A. Friesner, J. Phys. Chem. A, 2002, 106, 7407.

    CAS  Article  Google Scholar 

  41. T. Matsui, Y. Kitagawa, Y. Shigeta, M. Okumura, J. Chem. Theory Comput., 2013, 9, 2974.

    CAS  Article  Google Scholar 

  42. M. Uudsemaa, T. Tamm, J. Phys. Chem. A, 2003, 107, 9997.

    CAS  Article  Google Scholar 

  43. Y. Shimodaira, T. Miura, A. Kudo, H. Kobayashi, J. Chem. Theory Comput., 2007, 3, 789.

    CAS  Article  Google Scholar 

  44. L. E. Roy, E. R. Batista, P. J. Hay, Inorg. Chem., 2008, 47, 9228.

    CAS  Article  Google Scholar 

  45. Y. Takano, H. Nakamura, Int. J. Quantum Chem., 2009, 109, 3583.

    CAS  Article  Google Scholar 

  46. A. Migliore, P. H.-L. Sit, M. L. Klein, J. Chem. Theory Comput., 2009, 5, 307.

    CAS  Article  Google Scholar 

  47. Y. Takano, Y. Yonezawa, Y. Fujita, G. Kurisu, H. Naka-mura, Chem. Phys. Lett., 2011, 503, 296.

    CAS  Article  Google Scholar 

  48. R. Jono, M. Sumita, Y. Tateyama, K. Yamashita, J. Phys. Chem. Lett., 2013, 3, 3581.

    Article  Google Scholar 

  49. J. Li, C. L. Fisher, J. L. Chen, D. Bashford, L. Noodleman, Inorg. Chem., 1996, 35, 4694.

    CAS  Article  Google Scholar 

  50. R. Ayala, M. Sprik, J. Chem. Theory Comput., 2006, 2, 1403.

    CAS  Article  Google Scholar 

  51. A. A. Isse, A. Gennaro, J. Phys. Chem. B, 2010, 114, 7894.

    CAS  Article  Google Scholar 

  52. H. Kim, J. Park, Y. Sup Lee, J Comput. Chem., 2013, 34, 2233.

    CAS  Article  Google Scholar 

  53. R. W. Fawcett, Langmuir, 2008, 24, 9868.

    CAS  Article  Google Scholar 

  54. W. A. Donald, R. D. Leib, T. Jeremy, J. T. ÓBrien, E. R. Williams, Chem. Eur. J., 2009, 15, 5926.

    CAS  Article  Google Scholar 

  55. A. P. Davis, A. J. Fry, J. Phys. Chem. A, 2010, 114, 12299.

    CAS  Article  Google Scholar 

  56. W. A. Donald, R. D. Leib, J. T. O’Brien, M. F. Bush, E. R. Williams, J. Am. Chem. Soc., 2008, 130, 3371.

    CAS  Article  Google Scholar 

  57. S. Trasatti, Pure Appl. Chem., 1986, 58, 955.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tsaturyan.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2057—2065, November, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, N., Tsaturyan, A.A., Akitsu, T. et al. Photo-induced reduction of Cr6+ by the hybrid systems “CuII complex with Schiff base and TiO2”: dependence on irradiation wavelength. Russ Chem Bull 66, 2057–2065 (2017). https://doi.org/10.1007/s11172-017-1981-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1981-7

Key words

  • copper
  • titania
  • photocatalyst
  • Cr6+ reduction
  • density functional theory
  • quantum chemical calculations