Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2057–2065 | Cite as

Photo-induced reduction of Cr6+ by the hybrid systems “CuII complex with Schiff base and TiO2”: dependence on irradiation wavelength

  • N. Yoshida
  • A. A. Tsaturyan
  • T. Akitsu
  • Y. Tsunoda
  • I. N. Shcherbakov
Full Article

Abstract

The synthesis of novel CuII complexes with a Schiff base obtained by condensation of salicylaldehyde and an l-aspartic acid ester are described. The physicochemical properties of the complexes were compared with those of related CuII complexes obtained earlier. All the complexes studied were characterized by elemental analysis as well as by IR, UV-Vis, and EPR spectroscopies. The activity of the complexes and their hybrid systems (HS) with TiO2 in visible-light-driven photocatalysis in organic solvents was investigated. After irradiation with visible light, the complexes and corresponding HS reduce Cr6+ to Cr3+ more efficiently than bare TiO2. To determine the molecular orbital compositions and energies and to explain the electronic spectra and redox properties of the systems studied, density functional calculations of the optimized structures of representative model complexes were performed.

Key words

copper titania photocatalyst Cr6+ reduction density functional theory quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B., 1998, 17, 267.CrossRefGoogle Scholar
  2. 2.
    R. M. Powell, R. W. Puls, R. K. Hightower, D. A. Sabatini, Environ. Sci. Technol., 1995, 29, 1913.CrossRefGoogle Scholar
  3. 3.
    B. Deng, A.T. Stone, Environ. Sci. Technol., 1996, 30, 463.CrossRefGoogle Scholar
  4. 4.
    S. J. Hug, H.-U. Laubscher, B. R. James, Environ. Sci. Technol., 1997, 31, 160.CrossRefGoogle Scholar
  5. 5.
    P. R. Wittbrodt, C. D. Palmer, Environ. Sci. Technol., 1995, 29, 255.CrossRefGoogle Scholar
  6. 6.
    M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Appl. Catal. A, 2007, 325, 1.CrossRefGoogle Scholar
  7. 7.
    G. Jing, L. Ying, D. Runan, L. Yeqing, J. Hazard. Mater., 2012, 243, 265.CrossRefGoogle Scholar
  8. 8.
    G. Lee, J. Park, O. R. Harvey, Water Res., 2013, 47, 1136.CrossRefGoogle Scholar
  9. 9.
    H. Kyung, J. Lee, W. Choi, Environ. Sci. Technol., 2005, 39, 2376.CrossRefGoogle Scholar
  10. 10.
    R. A. Aziz, I. Sopyan, Recent Pat. Mater. Sci., 2009, 2, 88.CrossRefGoogle Scholar
  11. 11.
    S. Protti, A. Albini, N. Serpone, Phys. Chem. Chem. Phys., 2014, 16, 19790.CrossRefGoogle Scholar
  12. 12.
    C. L. Bianchi, C. Pirola, F. Galli, M. Stucchi, S. Morandi, G. Cerrato, V. Capucci, RSC Adv., 2015, 5, 53419.CrossRefGoogle Scholar
  13. 13.
    R. Nagarjuna, S. Challagulla, R. Ganesan, S. Roy, Chem. Eng. J., 2017, 308, 59.CrossRefGoogle Scholar
  14. 14.
    B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, RSC Adv., 2014, 4, 12685.CrossRefGoogle Scholar
  15. 15.
    B. A. Marinho, R. O. Cristуvгo, J. M. Loureiro, R. A. R. Boaventura, V. J. P. Vilar, Appl. Catal., B, 2016, 192, 208.CrossRefGoogle Scholar
  16. 16.
    T. Akitsu, Y. Ishiguro, S. Yamamoto, H. Nishizuru, Asian Chem. Lett., 2010, 14, 63.Google Scholar
  17. 17.
    T. Akitsu, H. Nishizuru, Asian Chem. Lett., 2010, 14, 261.Google Scholar
  18. 18.
    T. Nakayama, M. Minemoto, H. Nishizuru, T. Akitsu, Asian Chem. Lett., 2011, 15, 215.Google Scholar
  19. 19.
    H. Nishizuru, N. Kimura, T. Akitsu, Asian Chem. Lett., 2012, 16, 33.Google Scholar
  20. 20.
    M. Kurata, N. Yoshida, S. Fukunaga, T. Akitsu, Contemp. Eng. Sci., 2013, 6, 255.CrossRefGoogle Scholar
  21. 21.
    Y. Takeshita, A. Nogami, T. Akitsu, World Sci. Echo, 2014, 1, 20.Google Scholar
  22. 22.
    Y. Takeshita, K. Takakura, T. Akitsu, Int. J. Molec. Sci., 2015, 16, 3955.CrossRefGoogle Scholar
  23. 23.
    N. Yoshida, T. Akitsu, in Samarium, Chemical Properties, Occurrence and Potential Applications, Ed. K. R. Danford, Nova Sci. Publ., Inc., New York, 2014, p. 95.Google Scholar
  24. 24.
    N. Yoshida, T. Akitsu, in Integrating Approach to Photofunc-tional Hybrid Materials for Energy and the Environment, Ed. T. Akifsu, Nova Sci. Publ., Inc., New York, 2013, p. 111.Google Scholar
  25. 25.
    J. Krätsmár-Šmogrovi, F. Pavelik, J. Soldánová, J. Sivy, V. Seressová, M. emlika, Z. Naturforsch., B: J. Chem. Sci., 1991, 46, 1323.Google Scholar
  26. 26.
    N. A. Malakhova, A. V. Chernysheva, K. I. Brainina, Electroanalysis, 1991, 3, 691.CrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fuku-da, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Mar-tin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salva-dor, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Far-kas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.Google Scholar
  28. 28.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  29. 29.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  30. 30.
    C. Adamo, M. Cossi, V. Barone, J. Mol. Struct.: THEOCHEM, 1999, 493, 145.CrossRefGoogle Scholar
  31. 31.
    M. Ernzerhof, G. Scuseria, J. Chem. Phys., 1999, 110, 5029.CrossRefGoogle Scholar
  32. 32.
    G. A. Shamov, G. Schreckenbach, J. Phys. Chem. A, 2005, 109, 10961.CrossRefGoogle Scholar
  33. 33.
    K. Raghavachari, G. W. Trucks, J. Chem. Phys., 1989, 91, 1062.CrossRefGoogle Scholar
  34. 34.
    L. E. Roy, E. Jakubikova, M. G. Guthrie, E. R. Batista, J. Phys. Chem. A, 2009, 113, 6745.CrossRefGoogle Scholar
  35. 35.
    S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55, 117.Google Scholar
  36. 36.
    R. Cammi, J. Tomasi, J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  37. 37.
    A. Trujillo, M. Fuentealba, D. Carrillo, C. Manzur, I. Ledoux-Rak, J.-R. Hamon, J.-Y. Saillard, Inorg. Chem., 2010, 49, 2750.CrossRefGoogle Scholar
  38. 38.
    R. Jono, M. Sumita, Y. Tateyama, K. Yamashita, J. Phys. Chem. Lett., 2012, 3, 3581.CrossRefGoogle Scholar
  39. 39.
    Y. Takeshita, K. Takakura, T. Akitsu, Int. J. Mol. Sci., 2015, 16, 3955.CrossRefGoogle Scholar
  40. 40.
    M.-H. Baik, R. A. Friesner, J. Phys. Chem. A, 2002, 106, 7407.CrossRefGoogle Scholar
  41. 41.
    T. Matsui, Y. Kitagawa, Y. Shigeta, M. Okumura, J. Chem. Theory Comput., 2013, 9, 2974.CrossRefGoogle Scholar
  42. 42.
    M. Uudsemaa, T. Tamm, J. Phys. Chem. A, 2003, 107, 9997.CrossRefGoogle Scholar
  43. 43.
    Y. Shimodaira, T. Miura, A. Kudo, H. Kobayashi, J. Chem. Theory Comput., 2007, 3, 789.CrossRefGoogle Scholar
  44. 44.
    L. E. Roy, E. R. Batista, P. J. Hay, Inorg. Chem., 2008, 47, 9228.CrossRefGoogle Scholar
  45. 45.
    Y. Takano, H. Nakamura, Int. J. Quantum Chem., 2009, 109, 3583.CrossRefGoogle Scholar
  46. 46.
    A. Migliore, P. H.-L. Sit, M. L. Klein, J. Chem. Theory Comput., 2009, 5, 307.CrossRefGoogle Scholar
  47. 47.
    Y. Takano, Y. Yonezawa, Y. Fujita, G. Kurisu, H. Naka-mura, Chem. Phys. Lett., 2011, 503, 296.CrossRefGoogle Scholar
  48. 48.
    R. Jono, M. Sumita, Y. Tateyama, K. Yamashita, J. Phys. Chem. Lett., 2013, 3, 3581.CrossRefGoogle Scholar
  49. 49.
    J. Li, C. L. Fisher, J. L. Chen, D. Bashford, L. Noodleman, Inorg. Chem., 1996, 35, 4694.CrossRefGoogle Scholar
  50. 50.
    R. Ayala, M. Sprik, J. Chem. Theory Comput., 2006, 2, 1403.CrossRefGoogle Scholar
  51. 51.
    A. A. Isse, A. Gennaro, J. Phys. Chem. B, 2010, 114, 7894.CrossRefGoogle Scholar
  52. 52.
    H. Kim, J. Park, Y. Sup Lee, J Comput. Chem., 2013, 34, 2233.CrossRefGoogle Scholar
  53. 53.
    R. W. Fawcett, Langmuir, 2008, 24, 9868.CrossRefGoogle Scholar
  54. 54.
    W. A. Donald, R. D. Leib, T. Jeremy, J. T. ÓBrien, E. R. Williams, Chem. Eur. J., 2009, 15, 5926.CrossRefGoogle Scholar
  55. 55.
    A. P. Davis, A. J. Fry, J. Phys. Chem. A, 2010, 114, 12299.CrossRefGoogle Scholar
  56. 56.
    W. A. Donald, R. D. Leib, J. T. O’Brien, M. F. Bush, E. R. Williams, J. Am. Chem. Soc., 2008, 130, 3371.CrossRefGoogle Scholar
  57. 57.
    S. Trasatti, Pure Appl. Chem., 1986, 58, 955.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • N. Yoshida
    • 1
  • A. A. Tsaturyan
    • 2
  • T. Akitsu
    • 1
  • Y. Tsunoda
    • 1
  • I. N. Shcherbakov
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceTokyo University of ScienceShinjuku-ku, TokyoJapan
  2. 2.Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations