Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2035–2043 | Cite as

Mediated electrochemical synthesis of copper nanoparticles in solution

  • V. A. Kokorekin
  • A. V. Gamayunova
  • V. V. Yanilkin
  • V. A. Petrosyan
Full Article

Abstract

Environmentally friendly mediated electrochemical synthesis of copper nanoparticles in the solution using a copper anode as a source of copper ions has been realized for the first time. It is shown that at the potential of the redox pair MV2+/MV•+ methylviologen MV2+ is able to mediate a reduction of Cu2+ ions in 60% aqueous DMF/0.1 M Bu4NBF4. Copper nanoparticles build large aggregates (200—250 nm) in the absence of a stabilizer. The use of polyvinylpyrrolidone as a stabilizer makes it possible to obtain smaller copper nanoparticles (20—50 nm) of spherical and oval shape and to characterize them by physicochemical methods.

Key words

electrochemical reduction nanoparticles copper mediator methylviologen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    А. D. Pomogailo, А. S. Rosenberg, I. Е. Uflyand, Nano-chastizi metallov v polimerakh [Metal Nanoparticles in Poly-mers], Khimija, Moscow, 2000, 672 pp.Google Scholar
  2. 2.
    V. I. Roldugin, Russ. Chem. Rev., 2000, 69, 821.CrossRefGoogle Scholar
  3. 3.
    I. P. Suzdalev, Nanotechnologija: fiziko-khimija nanoklas-terov, nanostruktur i nanomaterialov [Nanotechnology: Phys-icochemistry of Nanoclusters, Nanostructures, and Nanoma-terials], Librokom, Moscow, 2009, 589 pp.Google Scholar
  4. 4.
    N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. Dálessio, P. G. Zam-bonin, E. Traversa, Chem. Mater., 2005, 17, 5255.CrossRefGoogle Scholar
  5. 5.
    N. A. Dhas, C. P. Raj, A. Gedanken, Chem. Mater., 1998, 10, 1446.CrossRefGoogle Scholar
  6. 6.
    M. Samim, N.K. Kaushik, A. Maitra, Bull. Mater. Sci., 2007, 30, 535.CrossRefGoogle Scholar
  7. 7.
    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Raja-kumar, A. A. Rahuman, Mater. Lett., 2012, 71, 114.CrossRefGoogle Scholar
  8. 8.
    P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O.Rubilar, N. Duran, M. Rai, Mater. Lett., 2014, 115, 13.CrossRefGoogle Scholar
  9. 9.
    O. A. Petrii, Russ. Chem. Rev., 2015, 84, 159.CrossRefGoogle Scholar
  10. 10.
    V. Sбez, T. Mason, Molecules, 2009, 14, 4284.CrossRefGoogle Scholar
  11. 11.
    I. Haas, S. Shanmugam, A. Gedanken, J. Phys. Chem. B, 2006, 110, 16947.CrossRefGoogle Scholar
  12. 12.
    M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 1994, 116, 7401.CrossRefGoogle Scholar
  13. 13.
    M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, Sci-ence, 1995, 267, 367.CrossRefGoogle Scholar
  14. 14.
    G. R. Nasretdinova, Y. N. Osin, A. T. Gubaidullin, V. V. Yanilkin, J. Electrochem. Soc., 2016, 163, G99.CrossRefGoogle Scholar
  15. 15.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. K. Mukhitova, A. Y. Ziganshina, I. R. Nizameev, M. K. Kad-irov, Russ. J. Electrochem., 2015, 51, 951.CrossRefGoogle Scholar
  16. 16.
    S. Fedorenko, M. Jilkin, N. Nastapova, V. Yanilkin, O. Bochkova, V. Buriliov, I. Nizameev, G. Nasretdinova, M. Kadirov, A. Mustafina, Y. Budnikova, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 185.CrossRefGoogle Scholar
  17. 17.
    V. V. Yanilkin, G. R. Nasybullina, A. Y. Ziganshina, I. R. Nizamiev, M. K. Kadirov, D. E. Korshin, A. I. Konovalov, Mendeleev Commun., 2014, 24, 108.CrossRefGoogle Scholar
  18. 18.
    V. V. Yanilkin, G. R. Nasybullina, E. D. Sultanova, A. Y. Ziganshina, A. I. Konovalov, Russ. Chem. Bull., 2014, 63, 1409.CrossRefGoogle Scholar
  19. 19.
    G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, A. T. Gu-baidullin, V. V. Yanilkin, Russ. J. Electrochem., 2017, 53, 25.CrossRefGoogle Scholar
  20. 20.
    V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. V. Nastapova, Y. N. Osin, Butlerov Comm., 2016, 46, 128.Google Scholar
  21. 21.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, А. V. Toropchina, Y. N. Osin, Electrochem. Com-mun., 2015, 59, 60.CrossRefGoogle Scholar
  22. 22.
    G. R. Nasretdinova, R. R. Fazleeva, R. К. Мukhitova, I. R. Nizameev, М. К. Каdirov, А. Yu. Ziganshina, V. V. Yanil-kin, Russ. J. Electrochem., 2015, 51, 1029.CrossRefGoogle Scholar
  23. 23.
    G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Y. Ziganshina, V. V. Yanil-kin, Electrochem. Commun., 2015, 50, 69.CrossRefGoogle Scholar
  24. 24.
    V. V. Yanilkin, G. R. Nasretdinova, Y. N. Osin, V. V. Salni-kov, Electrochim. Acta, 2015, 168, 82.CrossRefGoogle Scholar
  25. 25.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, Y. N. Osin, A. T. Gubaidullin, ECS Journal of Solid State Science and Technology, 2017, 6, M19.Google Scholar
  26. 26.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, S. V. Fedorenko, M. E. Jilkin, A. R. Mustafina, A. T. Gubaidul-lin, Y. N. Osin, RSC Advances, 2016, 6, 1851.CrossRefGoogle Scholar
  27. 27.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, Electrochem. Commun., 2016, 69, 36.CrossRefGoogle Scholar
  28. 28.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, S. V. Fedorenko, A. R. Mustafina, Yu. N. Osin, Russ. J. Electrochem., 2017, 53, 509.CrossRefGoogle Scholar
  29. 29.
    F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Heterocycles, 2012, 84, 1033.CrossRefGoogle Scholar
  30. 30.
    Pat. RF 2440122; 20.01.2012.Google Scholar
  31. 31.
    G. P. Jose, S. Santra, S. K. Mandal, T. K. Sengupta, J. Nanobiotechnology, 2011, 9, 9.CrossRefGoogle Scholar
  32. 32.
    D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, B. Qiu, Biosens. Bioelectron., 2014, 54, 273.CrossRefGoogle Scholar
  33. 33.
    Q. Xu, Y. Zhao, J. Z. Xu, J.-J. Zhu, Sensors and Actuators B: Chemical, 2006, 114, 379.CrossRefGoogle Scholar
  34. 34.
    V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Or-lov, A. A. Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem. Rev., 2013, 82, 648.CrossRefGoogle Scholar
  35. 35.
    TOPAS V. 4.2. Bruker AXS GmbH, Karlsruhe, Germany, 2009.Google Scholar
  36. 36.
    W. J. Plieth, J. Phys. Chem., 1982, 86, 3166.CrossRefGoogle Scholar
  37. 37.
    E. Weitz, Angew. Chem., 1954, 66, 658.CrossRefGoogle Scholar
  38. 38.
    A. L. Bacarella, J. C. Griess, J. Electrochem. Soc., 1973, 120, 459.CrossRefGoogle Scholar
  39. 39.
    F. K. Crundwell, Electrochim. Acta, 1992, 37, 2707.CrossRefGoogle Scholar
  40. 40.
    C. Yue, Z. Lin, L. Chen, F. Jiang, M. Hong, J. Mol. Struct., 2005, 779, 16.CrossRefGoogle Scholar
  41. 41.
    K. N. Lazarou, I. Chadjistamatis, A. Terzis, S. P. Perlepes, C. P. Raptopoulou, Polyhedron, 2010, 29, 1870.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • V. A. Kokorekin
    • 1
  • A. V. Gamayunova
    • 1
  • V. V. Yanilkin
    • 2
  • V. A. Petrosyan
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations