Skip to main content
Log in

Search for approaches to improving the calculation accuracy of the protein—ligand binding energy by docking

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The following reasons limiting the accuracy of calculations of the protein—ligand binding energy by the molecular docking programs are considered: the limited facilities of algorithms of finding a global minimum on a complicated multi-dimensional protein—ligand energy surface, restrictions on the degrees of freedom of a protein—ligand system including docking into a rigid protein, inadequacy of the existing force fields, a lack of taking into account the solvent or too rough allowance for the solvent in the docking procedure, a lack of the local energy optimization in the docking process, an inaccuracy of the construction of models of a target protein and a ligand, simplification of the calculation method of the Gibbs free energy of a molecular system, and limited computer resources for docking of one ligand. A new approach to the development of the new generation of docking programs is proposed. The approach allows one to remove step-by-step the existing simplifications and to increase considerably the accuracy of the whole docking process, including the calculation accuracy of the protein—ligand binding energy. The results of the study are presented and demonstrate the computational feasibility of the assigned docking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Sadovnichii, V. B. Sulimov, in Superkompryuternye tekhnologii v nauke, obrazovanii i promyshlennosti [Supercomputer Technologies in Science, Education, and Industry], Eds V. A. Sadovnichii, G. I. Savin, V. V. Voevodin, Izd. Mosk. Univ., Moscow, 2009, p. 16 (in Russian).

  2. G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, E. L. Barker, Pharmacol. Rev., 2014, 66,334.

    Article  Google Scholar 

  3. L. D. Landau, E. M. Lifshits, Statisticheskaya fizika. Ch. 1 [Statistical Physics. Part 1], Nauka, Moscow, 1976, p. 65 (in Russian).

    Google Scholar 

  4. P. V. Klimovich, M. R. Shirts, D. L. Mobley, J. Comput. Aided Mol. Des., 2015, 29,397.

    Article  CAS  Google Scholar 

  5. G. Klebe, Nat. Rev. Drug Disc., 2015, 14,95.

    Article  CAS  Google Scholar 

  6. M. V. Basilevsky, I. V. Leontyev, S. V. Luschekina, O. A. Kondakova, V. B. Sulimov, J. Comput. Chem., 2006, 27,552.

    Article  CAS  Google Scholar 

  7. M. V. Basilevsky, F. V. Grigoriev, I. V. Leontiev, V. B. Sulimov, J. Phys. Chem. A, 2005, 109, 6939.

    Article  CAS  Google Scholar 

  8. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucl. Acids Res., 2000, 28, 235; http://www.rcsb.org/pdb/home/ home.do.

    Article  CAS  Google Scholar 

  9. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem., 1998, 19, 1639.

    Article  CAS  Google Scholar 

  10. R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, J. Comput. Chem., 2007, 28, 1145.

    Article  CAS  Google Scholar 

  11. M. A. C. Neves, M. Totrov, R. Abagyan, J. Comput. Aided Mol. Des. 2012, 26,675.

    Article  CAS  Google Scholar 

  12. W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang, D. A. Case, I. D. Kuntz, R. C. Rizzo, J. Comput. Chem., 2014, 36, 1132.

    Article  Google Scholar 

  13. A. V. Sulimov, D. C. Kutov, I. V. Oferkin, E. V. Katkova, V. B. Sulimov, J. Chem. Inf. Mod., 2013, 53, 1946.

    Article  CAS  Google Scholar 

  14. A. N. Romanov, O. A. Kondakova, F. V. Grigoriev, A. V. Sulimov, S. V. Lushchekina, Ya. B. Martynov, V. B. Sulimov, Calculation Methods and Programming, 2008, 9, 213 (in Russian).

    Google Scholar 

  15. I. V. Oferkin, A. V. Sulimov, O. A. Kondakova, V. B. Sulimov, Calculation Methods and Programming, 2011, 12, 205 (in Russian).

    Google Scholar 

  16. D. C. Kutov, E. V. Katkova, A. V. Sulimov, O. A. Kondakova, V. B. Sulimov, Bull. South Ural State Univ., Ser. Math. Modelling, Programming & Computer Software, 2017, 10,94.

    Google Scholar 

  17. I. V. Oferkin, E. V. Katkova, A. V. Sulimov, D. C. Kutov, S. I. Sobolev, V. V. Voevodin, V. B. Sulimov, Adv. Bioinf., 2015, 2015, Article ID 126858; http://dx.doi.org/10.1155/ 2015/126858.

  18. I. V. Oferkin, V. B. Sulimov, E. V. Katkova, D. C. Kutov, F. V. Grigoriev, O. A. Kondakova, V. B. Sulimov, Biomedical Chemistry, 2015, 61, 712 (in Russian).

    CAS  Google Scholar 

  19. Schrodinger Release 2015–3: Schrodinger Suite 2015-3 Protein Preparation Wizard; Epik version 3.3, Schrodinger, LLC, New York, NY, 2015; Impact version 6.8, Schrodinger, LLC, New York, NY, 2015; Prime version 4.1, Schrodinger, LLC, New York, NY, 2015.

  20. G. M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, J. Comput. Aided Mol. Des., 2013, 27,221.

    Article  Google Scholar 

  21. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605.

    Article  CAS  Google Scholar 

  22. J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol., 1999, 285, 1735.

    Article  CAS  Google Scholar 

  23. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem., 2009, 16, 2785.

    Article  Google Scholar 

  24. J. J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs; http://OpenMOPAC.net (accessed March 07, 2017).

  25. Avogadro: an open-source molecular builder and visualization tool. Version 1.1.1; http://avogadro.openmolecules.net/ (accessed March 07, 2016).

  26. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf., 2012, 4,17.

    Article  CAS  Google Scholar 

  27. T. A. Halgren, J. Comput. Chem., 1996, 17,490.

    Article  CAS  Google Scholar 

  28. J. J. P. Stewart, J. Mol. Modeling, 2013, 19,1.

    Article  CAS  Google Scholar 

  29. I. V. Oferkin, D. A. Zheltkov, E. E. Tyrtyshnikov, A. V. Sulimov, D. C. Kutov, V. B. Sulimov, Bull. South Ural State Univ.. Ser. Math. Modelling, Programming & Computer Software, 2015, 8,83.

    Google Scholar 

  30. A. V. Sulimov, D. A. Zheltkov, I. V. Oferkin, D. C. Kutov, E. V. Katkova, E. E. Tyrtyshnikov, V. B. Sulimov, Comput. Struct. Biotechnol. J., 2017; DOI: 10.1016/j.csbj.2017.02.004.

    Google Scholar 

  31. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179.

    Article  CAS  Google Scholar 

  32. J. Wang, R. M. Wolf, J. M. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem., 2004, 25, 1157.

    Article  CAS  Google Scholar 

  33. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, A. D. MacKerell, Jr., J. Chem. Theory Comput., 2012, 8, 3257.

    Article  CAS  Google Scholar 

  34. W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc., 1996, 118, 11225.

    Article  CAS  Google Scholar 

  35. E. I. Sinauridze, A. N. Romanov, I. V. Gribkova, O. A. Kondakova, S. S. Surov, A. S. Gorbatenko, A. A. Butylin, M. Y. Monakov, A. A. Bogolyubov, Y. V. Kuznetsov, V. B. Sulimov, F. I. Ataullakhanov, PLoS ONE, 2011, 6, 5, e19969.

    Article  Google Scholar 

  36. V. B. Sulimov, E. V. Katkova, I. V. Oferkin, A. V. Sulimov, A. N. Romanov, A. I. Roschin, I. B. Beloglazova, O. S. Plekhanova, V. A. Tkachuk, V. A. Sadovnichiy, BioMed Res. Int., 2014, 2014, Article ID 625176.

  37. V. B. Sulimov, I. V. Gribkova, M. P. Kochugaeva, E. V. Katkova, A. V. Sulimov, D. C. Kutov, Kh. S. Shikhaliev, S. M. Medvedeva, M. Yu. Krysin, E. I. Sinauridze, F. I. Ataullakhanov, BioMed Res. Int., 2015, 2015, Article ID 120802.

  38. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput., 1995, 16, 1190.

    Article  Google Scholar 

  39. C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, ACM Transact. Math. Software, 1997, 23,550.

    Article  Google Scholar 

  40. W. Chen, M. K. Gilson, S. P. Webb, M. J. Potter, J. Chem. Theory Comput., 2010, 6, 3540.

    Article  CAS  Google Scholar 

  41. A. Yu. Mikhalev, I. V. Oferkin, I. V. Oseledets, A. V. Sulimov, E. E. Tyrtyshnikov, V. B. Sulimov, Calculation Methods and Programming, 2014, 15, 9 (in Russian).

    Google Scholar 

  42. V. B. Sulimov, A. Yu. Mikhalev, I. V. Oferkin, I. V. Oseledets, A. V. Sulimov, D. C. Kutov, E. V. Katkova, E. E. Tyrtyshnikov, Int. J. App. Eng. Res., 2015, 10, 44815.

    Google Scholar 

  43. A. N. Romanov, S. N. Jabin, Y. B. Martynov, A. V. Sulimov, F. V. Grigoriev, V. B. Sulimov, J. Phys. Chem. A, 2004, 108, 9323.

    Article  CAS  Google Scholar 

  44. O. Yu. Kupervasser, S. N. Jabin, Ya. B. Martynov, K. M. Fedulov, I. V. Oferkin, A. V. Sulimov, V. B. Sulimov, Calculation Methods and Programming, 2011, 12, 247 (in Russian).

    Google Scholar 

  45. S. N. Jabin, V. B. Sulimov, Scientific Visualization, 2011, 3, 27 (in Russian); http://sv-journal.org/2011-2/03/ index.html.

    Google Scholar 

  46. A. V. Sulimov, D. C. Kutov, E. V. Katkova, V. B. Sulimov, Adv. Bioinf., 2017, 2017, Article ID 7167691.

  47. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, J. Comput. Chem., 2010, 31,671.

    CAS  Google Scholar 

  48. B. R. Brooks, C. L. Brooks, 3rd, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem., 2009, 30, 1545.

    Article  CAS  Google Scholar 

  49. C. L. Brooks, J. Chen, M. Im, J. Am. Chem. Soc. 2006, 128, 3728.

    Article  Google Scholar 

  50. A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans., 1993, 2,799.

    Article  Google Scholar 

  51. D. A. Zheltkov, I. V. Oferkin, E. V. Katkova, A. V. Sulimov, V. B. Sulimov, E. E. Tyrtyshnikov, Calculation Methods and Programming, 2013, 14,279.

    Google Scholar 

  52. I. V. Oseledets, E. E. Tyrtyshnikov, SIAM J. Sci. Comput., 2009, 31, 3744.

    Article  Google Scholar 

  53. I. V. Oseledets, SIAM J. Sci. Comput., 2011, 33, 2295.

    Article  Google Scholar 

  54. I. V. Oseledets, E. E. Tyrtyshnikov, Linear Algebra Appl., 2010, 432,70.

    Article  Google Scholar 

  55. S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, Linear Algebra Appl., 1997. 261,1.

    Article  Google Scholar 

  56. E. E. Tyrtyshnikov, Computing, 2000, 64,367.

    Article  Google Scholar 

  57. S. A. Goreinov, E. E. Tyrtyshnikov, Contemp. Math., 2001, 208,47.

    Article  Google Scholar 

  58. S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, N. L. Zamarashkin, Matrix Methods: Theory, Algorithms, Applications, Eds V. Olshevsky, E. Tyrtyshnikov, World Scientific, Hackensack, 2010,247.

  59. V. A. Sadovnichy, A. V. Tikhonravov, V. V. Voevodin, V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale, CRC Press, Boca Raton—London—New York, 2013, 283 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Sulimov.

Additional information

Based on the Materials of the XX Mendeleev Congress on General and Applied Chemistry (September 26—30, 2016, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1913—1924, October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulimov, A.V., Kutov, D.C., Katkova, E.V. et al. Search for approaches to improving the calculation accuracy of the protein—ligand binding energy by docking. Russ Chem Bull 66, 1913–1924 (2017). https://doi.org/10.1007/s11172-017-1966-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1966-6

Keywords

Navigation