Skip to main content
Log in

IR-study of hydrated surface of oxide photocatalysts

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

IR spectroscopy combined with thermogravimetry was used to investigate the effect of the pretreatment temperature on the degree of coverage of the surface of oxide photocatalysts, TiO2, ZnO, CeO2, and Zn2+/TiO2, with water. At room temperature, the amount of adsorbed water per unit area of photocatalysts in the air decreases in the row: ZnO ≥ CeO2 > TiO2, whereas the temperature needed for complete removal of physically adsorbed water from the studied oxides decreases in the reverse order. Water is removed from the ZnO surface by evacuation at room temperature; in the case of CeO2 and TiO2, it desorbs at 200 and 300 °С, respectively. The terminal OH groups on the oxide surface are the most strongly bonded with adsorbed water. In the zinc modified TiO2, the terminal OH groups are firstly replaced by Zn cations, which causes both hydrophobization of the samples under atmospheric conditions and a decrease in the temperature at which physically adsorbed water is released from the surface. Evacuation of ZnO at 350 °C removes the surface oxygen and results in the generation of the surface defect sites. This causes strong absorption in the IR spectra in the region of 1000—4000 cm–1. The formation of surface defects probably causes the appearance of donor levels in the band gap. The energy of the transition of electrons from these levels to the conduction band corresponds to the energy of the IR radiation. After oxidation of such samples in O2 at 350 °C, strong absorption in the IR spectra disappears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 95,69.

    Article  CAS  Google Scholar 

  2. S. Sato, T. Kadowaki, J. Catal., 1987, 106,295.

    Article  CAS  Google Scholar 

  3. K. Tanaka, G. Blyholder, J. Phys. Chem., 1972, 76, 1807.

    Article  CAS  Google Scholar 

  4. T. N. Obee, R. T. Brown, Environ. Sci. Technol., 1995, 29, 1223.

    Article  CAS  Google Scholar 

  5. M. Shen, M. A. Henderson, J. Phys. Chem. C, 2012, 116, 18788.

    Article  CAS  Google Scholar 

  6. C. A. Walenta, S. L. Kollmannsberger, J. Kiermaier, A. Winbauer, M. Tschurl, U. Heiz, Phys. Chem. Chem. Phys., 2015, 17, 22809.

    Article  CAS  Google Scholar 

  7. C. E. Nanayakkara, W. A. Larish, V. H. Grassian, J. Phys. Chem. C, 2014, 118, 23011.

    Article  CAS  Google Scholar 

  8. J. M. Coronado, A. Javier Maira, A. Martínez-Arias, J. C. Conesa, J. Soria, J. Photochem. Photobiol. A, 2002, 150,213.

    Article  CAS  Google Scholar 

  9. H. Einaga, S. Futamura, T. Ibusuki, Environ. Sci. Technol., 2001, 35, 1880.

    Article  CAS  Google Scholar 

  10. H. Einaga, M. Harada, S. Futamura, T. Ibusuki, J. Phys. Chem. B, 2003, 107, 9290.

    Article  CAS  Google Scholar 

  11. P. C. K. Vesborg, J. L. Olsen, T. R. Henriksen, I. Chorkendorff, O. Hansen, Chem. Eng. J., 2010, 160,738.

    Article  CAS  Google Scholar 

  12. D. V. Barsukov, A. N. Pershin, I. R. Subbotina, J. Photochem. Photobiol. A, 2016, 324,175.

    Article  CAS  Google Scholar 

  13. F. Boccuzzi, C. Morterra, R. Scala, A. Zecchina, J. Chem. Soc., Faraday Trans., 1981, 2, 2059.

    Article  Google Scholar 

  14. K. H. Rieder, M. Ishigame, L. Genzel, Phys. Rev. B, 1972, 6, 3804.

    Article  CAS  Google Scholar 

  15. T. Berger, M. Sterrer, O. Diwald, E. Knözinger, D. Panayotov, T. L. Thompson, J. T. Yates, J. Phys. Chem. B, 2005, 109, 6061.

    Article  CAS  Google Scholar 

  16. F. Boccuzzi, G. Ghiotti, A. Chiorino, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 1779.

    Article  CAS  Google Scholar 

  17. A. A. Tsyganenko, V. N. Filimonov, J. Mol. Struct., 1973, 19,579.

    Article  CAS  Google Scholar 

  18. K. Atherton, G. Newbold, J. A. Hockey, Discuss. Faraday Soc., 1971, 52,33.

    Article  Google Scholar 

  19. M. Primet, P. Pichat, M.-V. Mathieu, J. Phys. Chem., 1971, 75, 1216.

    Article  CAS  Google Scholar 

  20. M. Nagao, J. Phys. Chem., 1971, 75, 3822.

    Article  CAS  Google Scholar 

  21. W. Hirschwald, Curr. Top. Mater. Sci., 1981, 7,148.

    Google Scholar 

  22. D. Raymand, A. C. T. Van Duin, W. A. Goddard, K. Hermansson, D. Spangberg, J. Phys. Chem. C, 2011, 115, 8573.

    Article  CAS  Google Scholar 

  23. M. Schiek, K. Al-Shamery, M. Kunat, F. Traeger, C. Wöll, Phys. Chem. Chem. Phys., 2006, 8, 1505.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Subbotina.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1847—1853, October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsukov, D.V., Subbotina, I.R. IR-study of hydrated surface of oxide photocatalysts. Russ Chem Bull 66, 1847–1853 (2017). https://doi.org/10.1007/s11172-017-1956-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1956-8

Keywords

Navigation