Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 3, pp 418–425 | Cite as

Primary photophysical and photochemical processes for Pt(SCN)6 2– complex

  • E. M. GlebovEmail author
  • I. P. Pozdnyakov
  • V. P. Chernetsov
  • V. P. Grivin
  • A. B. Venediktov
  • A. A. Melnikov
  • S. V. Chekalin
  • V. F. Plyusnin
Full Articles

Abstract

Photosolvation of a PtIV hexathiocyanate complex Pt(SCN)6 2– in water and ethanol was studied by steady-state photolysis, nanosecond laser flash photolysis, and ultrafast kinetic spectroscopy. Complexes Pt(SCN)5(H2O) and Pt(SCN)5(C2H5OH) were found to be the only reaction products. The quantum yields of photosolvation are independent of the excitation wavelength, being equal to 0.25 and 0.5 for the solutions of the complex in water and ethanol, respectively. Photosolvation proceeds by the mechanism of heterolytic metal—ligand bond dissociation without involvement of redox processes. The characteristic time of formation of the end products for both solvents is about 10 ps. Three successive intermediates detected on the picosecond time scale were interpreted as PtIV complexes. The nature of the intermediates and possible mechanisms of photosolvation are discussed.

Key words

photochemistry platinum(IV) pseudohalide complex aqueous and alcoholic solutions laser flash photolysis ultrafast kinetic spectroscopy primary photophysical and photochemical processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Cameron, A. B. Bocarsly, J. Am. Chem. Soc., 1985, 107, 6116CrossRefGoogle Scholar
  2. 1a.
    R. E. Cameron, A. B. Bocarsly, Inorg. Chem., 1986, 25, 2910.CrossRefGoogle Scholar
  3. 2.
    M. Sakamoto, M. Fujistuka, T. Majima, J. Photochem. Photobiol. C: Photochem. Rev., 2009, 10, 33CrossRefGoogle Scholar
  4. 2a.
    N. Toshima, T. Takahashi, Bull. Chem. Soc. Jpn, 1992, 65, 400CrossRefGoogle Scholar
  5. 2b.
    N. Toshima, K. Nakata, H. Kitoh, Inorg. Chim. Acta, 1997, 265, 149CrossRefGoogle Scholar
  6. 2c.
    H. Einaga, M. Harada, Langmuir, 2005, 21, 2578CrossRefGoogle Scholar
  7. 2d.
    M. Harada, K. Okamoto, M. Terazima, Langmuir, 2006, 22, 9142CrossRefGoogle Scholar
  8. 2e.
    Yu. Borodko, P. Ercius, D. Zherebetskyy, Y. Wang, Y. Sun, G. Somorjai, J. Phys. Chem. C, 2013, 117, 26667CrossRefGoogle Scholar
  9. 2f.
    H. Chang, Y. Tsai, C. Cheng, C. Lin, P. Wu, J. Power Sources, 2013, 239, 164CrossRefGoogle Scholar
  10. 2g.
    M. Wojnicki, P. Kwolek. J. Photochem. Photobiol. A: Chem., 2016, 314, 133.CrossRefGoogle Scholar
  11. 3.
    L. Zang, W. Macyk, C. Lange, W. F. Mayer, C. Antonius, D. Meissner, H. Kish, Chem. Eur. J., 2006, 6, 379CrossRefGoogle Scholar
  12. 3a.
    W. Macyk, H. Kish, Chem. Eur. J., 2001, 7, 1862CrossRefGoogle Scholar
  13. 3b.
    X. Z. Li, F. B. Li, Chemosphere, 2002, 48, 1103CrossRefGoogle Scholar
  14. 3c.
    F. Mahlamvana, R. J. Kriek, Appl. Catal. B: Environ., 2014, 148–149, 387CrossRefGoogle Scholar
  15. 3d.
    Q. Li, Zh. Chen, X. Zheng, Zh. Jin, J. Phys. Chem., 1992, 96, 5959CrossRefGoogle Scholar
  16. 3e.
    Zh. Jin, Zh. Chen, Q. Li, Ch. Xi, X. Zheng, J. Photochem. Photobiol. A: Chem., 1994, 81, 177CrossRefGoogle Scholar
  17. 3f.
    C. Harris, P. V. Kamat, ACS Nano, 2010, 4, 7321.CrossRefGoogle Scholar
  18. 4.
    A. K. Gupta, R. Z. Parker, R. J. Hanrahan, Int. J. Hydrogen Energy, 1993, 18, 713CrossRefGoogle Scholar
  19. 4a.
    A. K. Gupta, R. Z. Parker, C. E. Keefer, R. J. Hanrahan, Solar Energy, 1993, 51, 409.CrossRefGoogle Scholar
  20. 5.
    G. R. Gale, E. M. Walker, Jr., A. B. Smith, A. E. Stone, Proc. Soc. Exp. Biol. Med., 1971, 136, 1197.CrossRefGoogle Scholar
  21. 6.
    V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds, Acad. Press, New York, 1970, p. 257–269, 307–312.Google Scholar
  22. 7.
    P. C. Ford, J. D. Petersen, R. E. Hintze, Coord. Chem. Rev., 1974, 14, 67.CrossRefGoogle Scholar
  23. 8.
    Concepts of Inorganic Photochemistry, Eds A. W. Adamson, P. D. Fleischauer, Wiley, New York, 1975, 439 pp.Google Scholar
  24. 9.
    J. Sykora, J. Sima, Photochemistry of Coordination Compounds, Elsevier, Amsterdam–Oxford–New York–Tokyo, 1990, 225 pp.Google Scholar
  25. 10.
    I. P. Pozdnyakov, Е. М. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2007, 442, 78.CrossRefGoogle Scholar
  26. 11.
    I. L. Zheldakov, Ph. D. Thesis, Bowling Green State University, Bowling Green, Ohio, USA, 2010.Google Scholar
  27. 12.
    I. L. Zheldakov, M. N. Ryazantsev, A. N. Tarnovsky, J. Phys. Chem. Lett., 2011, 2, 1540.CrossRefGoogle Scholar
  28. 13.
    E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. F. Plyusnin, V. P. Grivin, N. V. Tkachenko, H. Lemmetyinen, RSC Adv., 2012, 2, 5768.CrossRefGoogle Scholar
  29. 14.
    E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Russ. Chem. Bull., 2013, 62, 1540.CrossRefGoogle Scholar
  30. 15.
    I. P. Pozdnyakov, E. M. Glebov, S. G. Matveeva, V. F. Plyusnin, A. A. Melnikov, S. V. Chekalin, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 1784 [Izv. Akad. Nauk, Ser. Khim., 2015, 1784].CrossRefGoogle Scholar
  31. 16.
    A. Goursot, A. D. Kirk, W. L. Waltz, G. B. Porter, D. K. Sharma, Inorg. Chem., 1987, 26, 14.CrossRefGoogle Scholar
  32. 17.
    A. V. Litke, I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2009, 477, 304.CrossRefGoogle Scholar
  33. 18.
    E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Photochem. Photobiol. Sci., 2011, 10, 1709.CrossRefGoogle Scholar
  34. 19.
    E. M. Glebov, I. P. Pozdnyakov, A. A. Melnikov, S. V. Chekalin, J. Photochem. Photobiol. A: Chem., 2014, 292, 34.CrossRefGoogle Scholar
  35. 20.
    C. Rensing, O. T. Ehrler, J.-P. Yang, A.-N. Unterreiner, M. M. Kappes, J. Chem. Phys., 2009, 130, 234306.CrossRefGoogle Scholar
  36. 21.
    E. M. Glebov, I. P. Pozdnyakov, V. F. Plyusnin, I. Khmelinskii, J. Photochem. Photobiol. C: Photochem. Rev., 2015, 24, 1.CrossRefGoogle Scholar
  37. 22.
    A. M. Golub, H. Kohler, V. V. Skopenko, Chemistry of Pseudohalides, Elsevier, Amsterdam–Oxford–New York–Tokyo, 1986, 476 pp.Google Scholar
  38. 23.
    V. S. Sastri, C. H. Langford, J. Inorg. Nucl. Chem., 1974, 36, 2616.CrossRefGoogle Scholar
  39. 24.
    E. M. Glebov, V. P. Chernetsov, V. P. Grivin, V. F. Plyusnin, A. B. Venediktov, Mendeleev Commun., 2014, 24, 111.CrossRefGoogle Scholar
  40. 25.
    Sintez kompleksnykh soedinenii metallov platinovoi gruppy [Synthesis of Complexes of the Paltinum Metal Group], Ed. I. I. Chernyaeva, Nauka, Moscow, 1964, 101 pp. (in Russian).Google Scholar
  41. 26.
    I. P. Pozdnyakov, V. F. Plyusnin, V. P. Grivin, D. Yu. Vorobyev, N. M. Bazhin, E. Vauthey, J. Photochem. Photobiol. A: Chem., 2006, 182, 75.CrossRefGoogle Scholar
  42. 27.
    S. V. Chekalin, Phys. Usp., 2006, 49, 634.CrossRefGoogle Scholar
  43. 28.
    L. Palfrey, T. F. Heinz, J. Opt. Soc. Am. B, 1985, 2, 674.CrossRefGoogle Scholar
  44. 29.
    A. Sabatini, I. Bertini, Inorg. Chem., 1965, 4, 959.CrossRefGoogle Scholar
  45. 30.
    D. L. Swihart, W. R. Mason, Inorg. Chem., 1970, 9, 1749.CrossRefGoogle Scholar
  46. 31.
    I. V. Znakovskaya, Yu. A. Sosedova, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, Photochem. Photobiol. Sci., 2005, 4, 897.CrossRefGoogle Scholar
  47. 32.
    L. E. Cox, D. G. Peters, E. L. Wehry, J. Inorg. Nucl. Chem., 1972, 34, 297CrossRefGoogle Scholar
  48. 32a.
    K. P. Balashev, V. V. Vasil´ev, А. M. Zimnyakov, G. А. Shagisultanova, USSR J. Coord. Chem., 1984, 10, 976.Google Scholar
  49. 33.
    A. S. Rury, R. J. Sension, Chem. Phys., 2013, 422, 220.CrossRefGoogle Scholar
  50. 34.
    A. Vlcek, Jr., Coord. Chem. Rev., 2000, 200–202, 933.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • E. M. Glebov
    • 1
    • 2
    Email author
  • I. P. Pozdnyakov
    • 1
    • 2
  • V. P. Chernetsov
    • 3
  • V. P. Grivin
    • 1
  • A. B. Venediktov
    • 4
  • A. A. Melnikov
    • 5
  • S. V. Chekalin
    • 5
  • V. F. Plyusnin
    • 1
    • 2
  1. 1.V. V. Voevodsky Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussian Federation
  4. 4.A. V. Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  5. 5.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussian Federation

Personalised recommendations