Russian Chemical Bulletin

, Volume 66, Issue 1, pp 23–29 | Cite as

Iron(II) and ruthenium(II) complexes with polypyridine derivatives as sensitizers for DSSC: the structure and spectral properties, as studied by quantum chemistry methods

  • A. A. Tsaturyan
  • I. N. Shcherbakov
  • T. V. Shvydko
  • V. A. Kogan
Full Articles

Abstract

Density functional calculations of the geometries, electronic structures, and spectral properties of a series of iron(II) and ruthenium(II) complexes with 4,4´,4´,4´´-substituted 2,2´:6´2´´:6´´,2´´´-quaterpyridines were carried out. A high-spin state is characteristic of the iron(II) complexes with Cl, NO, CNS, and I as axial ligands while a low-spin state is characteristic of the iron(II) complex with a CN axial ligand. Calculations of the complexes with the nitroxide ligand predict intense absorption in a wide wavelength range up to the IR region.

Keywords

dye-sensitized solar cells complexes electronic structure molecular orbitals quantum chemical calculations density functional theory time-dependent density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Grätzel, Nature, 2001, 414,338.CrossRefGoogle Scholar
  2. 2.
    M. K. Nazeeruddin, M. Gratzel, in Comprehensive Coordination Chemistry II, Vol. 9, Eds J. A. McCleverty, T. J. Meyer, Elsever, Dordrecht, 2004, Ch.16.Google Scholar
  3. 3.
    Zh. I. Alferov, Rev. Mod. Phys., 2001, 73,767.CrossRefGoogle Scholar
  4. 4.
    L. M. Gonçalves, V. Z. Bermudez, H. A. Ribeiro, A. M. Mendes, Energy Environ. Sci., 2008, 1,655.CrossRefGoogle Scholar
  5. 5.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595.CrossRefGoogle Scholar
  6. 6.
    W. Shockley, H. J. Queisser, J. Appl. Phys., 1961, 32,510.CrossRefGoogle Scholar
  7. 7.
    N. Robertson, Angew. Chem., Int. Ed. Engl., 2006, 45, 2338.CrossRefGoogle Scholar
  8. 8.
    W. D. K. Clark, N. Sutin, J. Am. Chem. Soc., 1977, 99, 4676.CrossRefGoogle Scholar
  9. 9.
    J. J. Rack, H. B. Gray, Inorg. Chem., 1999, 38,2.CrossRefGoogle Scholar
  10. 10.
    H. Taube, Angew. Chem., Int. Ed. Engl., 1984, 23,329.CrossRefGoogle Scholar
  11. 11.
    W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Coord. Chem. Rev., 2004, 248, 1363.CrossRefGoogle Scholar
  12. 12.
    S. Y. Brauchli, E. C. Constable, C. E. Housecroft, Dyes and Pigments, 2015, 113,447.CrossRefGoogle Scholar
  13. 13.
    J. Baldenebro-Lopeza, N. Flores-Holguin, J. Castorena-Gonzalez, D. Glossman-Mitnik, J. Photochem. Photob. A: Chem., 2013, 267,1.CrossRefGoogle Scholar
  14. 14.
    L. Bahadur, P. Srivastava, J. Electrochem. Soc., 2004, 151, G740.CrossRefGoogle Scholar
  15. 15.
    T.-H. Wang, C.-H. Hsiao, S.-H. Chen, C.-M. Hsiao, L.-Y. Chen, G.-M. Li, B.-C. Hsueh, J. Organomet. Chem., 2015, 791,72.CrossRefGoogle Scholar
  16. 16.
    S. Mukherjee, D. N. Bowman, E. Jakubikova, Inorg. Chem., 2015, 54,560.CrossRefGoogle Scholar
  17. 17.
    T. Duchanois, T. Etienne, C. Cebrián, L. Liu, A. Monari, M. Beley, X. Assfeld, S. Haacke, P. C. Gros, Eur. J. Inorg. Chem., 2015, 14, 2469.CrossRefGoogle Scholar
  18. 18.
    X. Lu, K.-S. Chau, S. Wei, Z. Deng, N. Ding, L. Zhao, C.-M. L. Wu, W. Guo, J. Organomet. Chem., 2013, 741,168.CrossRefGoogle Scholar
  19. 19.
    G. C. Vougioukalakis, A. I. Philippopoulos, T. Stergiopoulos, P. Falaras, Coord. Chem. Rev., 2011, 255, 2602.CrossRefGoogle Scholar
  20. 20.
    N. Martsinovich, A. Troisi, Energy Environ. Sci., 2011, 4, 4473.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.1, Gaussian Inc., Pittsburgh (PA), 2003.Google Scholar
  22. 22.
    F. Neese, in First Principles Approach to Spin-Hamiltonian Parameters, Wiley-VCH, Weinheim, Germany, 2009, p. 297–396.Google Scholar
  23. 23.
    F. Neese, WIREs Comput. Mol. Sci., 2012, 2,73.CrossRefGoogle Scholar
  24. 24.
    X. Q. Lu, S. X. Wei, C.-M. L. Wu, D. Ning, S. R. Li, L. M. Zhao, W. Y. Guo, Int. J. Photoenergy, 2011, 316952.Google Scholar
  25. 25.
    J. Wang, F.-Q. Bai, B.-H. Xia, L. Feng, H.-X. Zhang, Q.-J. Panc, Phys. Chem. Chem. Phys., 2011, 13, 2206.CrossRefGoogle Scholar
  26. 26.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  27. 27.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37,785.CrossRefGoogle Scholar
  28. 28.
    S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55,117.Google Scholar
  29. 29.
    R. Cammi, J. Tomasi, J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  30. 30.
    G. A. Zhurko, Chemcraft, Version 1.6; http://www. chemcraftprog.com.Google Scholar
  31. 31.
    Chemissian 1.770; http://www.chemissian.com.Google Scholar
  32. 32.
    M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem., 1999, 38, 6298.CrossRefGoogle Scholar
  33. 33.
    M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 2001, 123, 1613.CrossRefGoogle Scholar
  34. 34.
    C. Coluccini, N. Manfredi, M. M. Salamone, R. Ruffo, M. G. Lobello, F. D. Angelis, A. Abbotto, J. Org. Chem., 2012, 77, 7945.CrossRefGoogle Scholar
  35. 35.
    A. Hagfeldt, H. Greijer, J. Lindgren, J. Phys. Chem. B., 2001, 105, 6314.CrossRefGoogle Scholar
  36. 36.
    L. Zhang, J. M. Cole, ACS Appl. Mater. Interfaces, 2015, 7, 3427.CrossRefGoogle Scholar
  37. 37.
    X. Q. Lu, S. X. Wei, C.-M. L. Wu, S. R. Li, W. Y. Guo, J. Phys. Chem. C, 2011, 115, 3753.CrossRefGoogle Scholar
  38. 38.
    M. Mojiri-Foroushani, H. Dehghani, N. Salehi-Vanani, Electrochim. Acta, 2013, 92,315.CrossRefGoogle Scholar
  39. 39.
    A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science, 2011, 334,629.CrossRefGoogle Scholar
  40. 40.
    K. B. Aribia, T. Moehl, S. M. Zakeeruddin, M. Grätzel, Chem. Sci., 2013, 4, 454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • A. A. Tsaturyan
    • 1
  • I. N. Shcherbakov
    • 1
  • T. V. Shvydko
    • 1
  • V. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations