Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 11, pp 2568–2577 | Cite as

Fabrication of composite materials from semiconductor quantum dots and organic polymers for optoelectronics and biomedicine: role of surface ligands

  • M. A. Zvaigzne
  • I. L. Martynov
  • P. S. Samokhvalov
  • I. R. Nabiev
Reviews

Abstract

Recent advances in the fields of application of the composites based on quantum dots (QDs) as optical converters for the light emitting devices, solar cells and biofunctional nanoprobes for detection of markers and medical diagnostics are considered. The possibilities of application of various QD—ligand—polymer combinations depending on desired photophysical properties in the final composite are analyzed. An attempt is made to predict the key future trends in the fabrication and application of hybrid nanocomposites for biomedicine and optoelectronics.

Key words

quantum dots ligands polymers composite materials radiation converters photovoltaics biomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Brus, J. Chem. Phys., 1984, 80, 4403.CrossRefGoogle Scholar
  2. 2.
    J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek, Int. J. Mol. Sci., 2009, 10, 656.CrossRefGoogle Scholar
  3. 3.
    T. R. Pisanic II, Y. Zhang, T. H. Wang, Analyst, 2014, 139, 2968.CrossRefGoogle Scholar
  4. 4.
    I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater., 2005, 4, 435.CrossRefGoogle Scholar
  5. 5.
    E. J. McCumiskey, N. Chandrasekhar, C. R. Taylor, Nanotechnology, 2010, 21, 225703.CrossRefGoogle Scholar
  6. 6.
    E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater., 2010, 22, 3076.CrossRefGoogle Scholar
  7. 7.
    C. B. Murray, D. J. Noms, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.CrossRefGoogle Scholar
  8. 8.
    S. Lin, X. Xie, M. R. Patel, Y.-H. Yang, Z. Li, F. Cao, O. Gheysens, Y. Zhang, S. S. Gambhir, J. H. Rao, J. C. Wu, BMC Biotechnol., 2007, 7, 67.CrossRefGoogle Scholar
  9. 9.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods, 2008, 5, 763.CrossRefGoogle Scholar
  10. 10.
    P. Samokhvalov, P. Linkov, J. Michel, M. Molinari, I. Nabiev, Proc. SPIE, 2014, 8955, 89550S-1.Google Scholar
  11. 11.
    O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater., 2013, 12, 445.CrossRefGoogle Scholar
  12. 12.
    S. Jun, E. Jang, Angew. Chem. Int. Ed., 2013, 52, 679.CrossRefGoogle Scholar
  13. 13.
    A. A. P. Mansur, F. P. Ramanery, H. S. Mansur, Mater. Chem. Phys., 2013, 141, 223.CrossRefGoogle Scholar
  14. 14.
    S. Ananthakumar, J. Ramkumar, S. Moorthy Babu, Mater. Sci. Semicond. Process., 2014, 22, 44.CrossRefGoogle Scholar
  15. 15.
    R. Mastria, A. Rizzo, C. Giansante, D. Ballarini, L. Dominici, O. Inganäs, G. Gigli, J. Phys. Chem. C, 2015, 119, 14972.CrossRefGoogle Scholar
  16. 16.
    L. Pang, Y. Shen, K. Tetz, Y. Fainman, Opt. Express, 2005, 13, 44.CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, X. Wang, Y. Liu, S. Song, D. Liu, J. Mater. Chem., 2012, 22, 11971.CrossRefGoogle Scholar
  18. 18.
    X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature, 2014, 515, 96.CrossRefGoogle Scholar
  19. 19.
    P. K. Khanna, N. Singh, J. Lumin., 2007, 127, 474.CrossRefGoogle Scholar
  20. 20.
    J.-H. Kim, H. Yang, Nanotechnology, 2014, 25, 225601.CrossRefGoogle Scholar
  21. 21.
    J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater., 2011, 10, 765.CrossRefGoogle Scholar
  22. 22.
    Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, M. Krüger, Sol. Energy Mater. Sol. Cells, 2011, 95, 1232.CrossRefGoogle Scholar
  23. 23.
    C. Borriello, A. Bruno, R. Diana, T. Di Luccio, P. Morvillo, R. Ricciardi, F. Villani, C. Minarini, Phys. Status Solidi, 2015, 212, 245.CrossRefGoogle Scholar
  24. 24.
    L. M. Nikolaenko, F. V. Razumov, Russ. Chem. Rev. (Engl. Transl.), 2013, 82, 429.CrossRefGoogle Scholar
  25. 25.
    X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, S. Nie, Curr. Opin. Biotechnol., 2005, 16, 63.CrossRefGoogle Scholar
  26. 26.
    T. Asefa, C. T. Duncan, K. K. Sharma, Analyst, 2009, 134, 1980.CrossRefGoogle Scholar
  27. 27.
    A. N. Generalova, V. A. Oleinikov, A. Sukhanova, M. V. Artemyev, I. Nabiev, Biosens. Bioelectron., 2013, 39, 187.CrossRefGoogle Scholar
  28. 28.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Millot, P. Chames, D. Baty, M. Artemyev, S. Poly, V. A. Oleinikov, M. Pluot, J. H. M. Cohen, I. Nabiev, Nanomedicine: NBM, 2012, 8, 516.CrossRefGoogle Scholar
  29. 29.
    R. Bilan, F. Fleury, I. Nabiev, A. Sukhanova, Bioconjugate Chem., 2015, 26, 609.CrossRefGoogle Scholar
  30. 30.
    N. V. Beloglazova, I. Y. Goryacheva, R. Niessner, D. Knopp, Microchim. Acta, 2011, 175, 361.CrossRefGoogle Scholar
  31. 31.
    A. Shemetov, I. Nabiev, A. Sukhanova, ACS Nano, 2012, 6, 4585.CrossRefGoogle Scholar
  32. 32.
    C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, W. J. Parak, Nano Lett., 2005, 5, 331.CrossRefGoogle Scholar
  33. 33.
    S. A. Fischer, A. M. Crotty, S. V. Kilina, S. A. Ivanov, S. Tretiak, Nanoscale, 2012, 4, 904.CrossRefGoogle Scholar
  34. 34.
    K. Kumari, U. Kumar, S. N. Sharma, S. Chand, R. Kakkar, V. D. Vankar, V. Kumar, J. Phys. D. Appl. Phys., 2008, 41, 235409.CrossRefGoogle Scholar
  35. 35.
    U. Kumar, K. Kumari, S. N. Sharma, M. Kumar, V. D. Vankar, R. Kakkar, V. Kumar, Colloid Polym. Sci., 2010, 288, 841.CrossRefGoogle Scholar
  36. 36.
    K. V. Vokhmintcev, P. S. Samokhvalov, I. Nabiev, Nano Today, 2016, 11, 189.CrossRefGoogle Scholar
  37. 37.
    P. Kathirgamanathan, L. Bushby, M. Kumaraverl, S. Ravichandran, S. Surendrakumar, J. Disp. Technol., 2015, 11, 480.CrossRefGoogle Scholar
  38. 38.
    S. Jun, J. Lee, E. Jang, ACS Nano, 2013, 7, 1472.CrossRefGoogle Scholar
  39. 39.
    F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, S. Brovelli, Nat. Phot., 2014, 8, 392.CrossRefGoogle Scholar
  40. 40.
    H. Kim, B.-H. Kwon, M. Suh, D. S. Kang, Y. Kim, D. Y. Jeon, Electrochem. Solid-State Lett., 2011, 14, K55–K57.CrossRefGoogle Scholar
  41. 41.
    L. zur Borg, D. Lee, J. Lim, W. K. Bae, M. Park, S. Lee, C. Lee, K. Char, R. Zentel, J. Mater. Chem. C, 2013, 1, 1722.CrossRefGoogle Scholar
  42. 42.
    C. Yoon, H. Hong, H. Chang, D. Hwang, D. C. Lee, C. Kim, Y. Kim, K. Lee, Colloids Surf. A: Physicochem. Eng. Asp., 2013, 428, 86.CrossRefGoogle Scholar
  43. 43.
    C. Yoon, T. Kim, M.-H. Shin, Y.-G. Song, K. Shin, Y.-J. Kim, K. Lee, J. Mater. Chem. C, 2015, 3, 6908.CrossRefGoogle Scholar
  44. 44.
    M. Tamborra, M. Striccoli, R. Comparelli, M. L. Curri, A. Petrella, A. Agostiano, Nanotechnology, 2004, 15, S240.CrossRefGoogle Scholar
  45. 45.
    N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, M. D. Dawson, Opt. Mater. Express, 2012, 2, 250.CrossRefGoogle Scholar
  46. 46.
    J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, K. F. Jensen, Adv. Mater., 2000, 12, 1102.CrossRefGoogle Scholar
  47. 47.
    S. Ishii, R. Ueji, S. Nakanishi, Y. Yoshida, H. Nagata, T. Itoh, M. Ishikawa, V. Biju, J. Photochem. Photobiol. A: Chem., 2006, 183, 285.CrossRefGoogle Scholar
  48. 48.
    J. A. Renz, P. A. Troshin, G. Gobsch, V. F. Razumov, H. Hoppe, Phys. Status Solidi R., 2008, 2, 263.CrossRefGoogle Scholar
  49. 49.
    G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789.CrossRefGoogle Scholar
  50. 50.
    S. Emin, S. P. Singh, L. Han, N. Satoh, A. Islam, Sol. Energy, 2011, 85, 1264.CrossRefGoogle Scholar
  51. 51.
    F. Cataldo, S. Iglesias-Groth, Y. Hafez, Eur. Chem. Bull., 2013, 2, 1013.Google Scholar
  52. 52.
    J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mii, R. J. Ellingson, A. J. Nozik, J. Am. Chem. Soc., 2006, 128, 3241.CrossRefGoogle Scholar
  53. 53.
    J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, E. H. Sargent, Nat. Nanotechnol., 2009, 4, 40.CrossRefGoogle Scholar
  54. 54.
    K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, S. Hoogland, H. Shukla, E. J. D. Klem, L. Levina, E. H. Sargent, Appl. Phys. Lett., 2008, 92, 122111.CrossRefGoogle Scholar
  55. 55.
    D. V. Talapin, C. B. Murray, Science, 2005, 310, 86.CrossRefGoogle Scholar
  56. 56.
    F. W. Wise, Acc. Chem. Res., 2000, 33, 773.CrossRefGoogle Scholar
  57. 57.
    S. J. Oh, N. E. Berry, J. H. Choi, E. A. Gaulding, T. Paik, S. H. Hong, C. B. Murray, C. R. Kagan, ACS Nano, 2013, 7, 2413.CrossRefGoogle Scholar
  58. 58.
    O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, E. H. Sargent, ACS Nano, 2012, 6, 8448.CrossRefGoogle Scholar
  59. 59.
    P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, V. Bulovi, ACS Nano, 2014, 8, 5863.CrossRefGoogle Scholar
  60. 60.
    Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, M. Law, Nano Lett., 2010, 10, 1960.CrossRefGoogle Scholar
  61. 61.
    N. B. Haj, M. Haouari, R. Ebdelli, Z. Zaaboub, M. M. Habchi, Phys. E: Low-dimension. Syst. Nanostruct., 2015, 69, 145.CrossRefGoogle Scholar
  62. 62.
    J. D. Olson, G. P. Gray, S. A. Carter, Sol. Energy Mater. Sol. Cells, 2009, 93, 519.CrossRefGoogle Scholar
  63. 63.
    Y. Wu, G. Zhang, Nano Lett., 2010, 10, 1628.CrossRefGoogle Scholar
  64. 64.
    J. Xu, J. Wang, M. Mitchell, P. Mukherjee, M. Jeffries-El, J. W. Petrich, Z. Lin, Phys. Chem. Chem. Phys., 2008, 10, 4027.CrossRefGoogle Scholar
  65. 65.
    I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, J. Kolny-Olesiak, J. Phys. Chem. C, 2010, 114, 12784.CrossRefGoogle Scholar
  66. 66.
    Y. Zhou, F. S. Riehle, Y. Yuan, H.-F. Schleiermacher, M. Niggemann, G. A. Urban, M. Krüger, Appl. Phys. Lett., 2010, 96, 013304.CrossRefGoogle Scholar
  67. 67.
    J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, P. N. Prasad, Appl. Phys. Lett., 2009, 94, 133302.CrossRefGoogle Scholar
  68. 68.
    Y. Xing, A. M. Smith, Int. J. Nanomed., 2006, 1, 473.CrossRefGoogle Scholar
  69. 69.
    D. M. Willard, L. L. Carillo, J. Jung, A. Van Orden, Nano Lett., 2001, 2, 469.CrossRefGoogle Scholar
  70. 70.
    W. W. Yu, Expert Opin. Biol. Ther., 2008, 8, 1571.CrossRefGoogle Scholar
  71. 71.
    E. E. Lees, T. Nguyen, A. H. A. Clayton, P. Mulvaney, B. W. Muir, P. Mulvaney, ACS Nano, 2009, 3, 1121.CrossRefGoogle Scholar
  72. 72.
    B. Dubertret, Science, 2002, 298, 1759.CrossRefGoogle Scholar
  73. 73.
    A. M. Smith, H. Duan, M. N. Rhyner, G. Ruan, S. Nie, Phys. Chem. Chem. Phys., 2006, 8, 3895.CrossRefGoogle Scholar
  74. 74.
    N. Lala, S. P. Lalbegi, M. Sastry, Langmuir, 2001, 17, 3766.CrossRefGoogle Scholar
  75. 75.
    L. Shen, P. E. Laibinis, T. A. Hatton, Langmuir, 1999, 15, 447.CrossRefGoogle Scholar
  76. 76.
    A. Swami, A. Kumar, M. Sastry, Langmuir, 2003, 19, 1168.CrossRefGoogle Scholar
  77. 77.
    W. W. Yu, E. Chang, J. C. Falkner, J. Zhang, A. M. AlSomali, C. M. Sayes, J. Johns, R. Drezek, V. L. Colvin, J. Am. Chem. Soc., 2007, 129, 2871.CrossRefGoogle Scholar
  78. 78.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett., 2004, 4, 703.CrossRefGoogle Scholar
  79. 79.
    X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol., 2003, 21, 41.CrossRefGoogle Scholar
  80. 80.
    X. Hu, X. Gao, ACS Nano, 2010, 4, 6080.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. A. Zvaigzne
    • 1
  • I. L. Martynov
    • 1
  • P. S. Samokhvalov
    • 1
  • I. R. Nabiev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussian Federation
  2. 2.Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations